Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grand Challenges in Microelectronics aim for ‘Moore for less’

05.12.2007
Pocket-sized supercomputers and zero power mobile phones are just two of the key challenges which UK engineers have set themselves for the next 20 years.

The goals are part of the Grand Challenges in Microelectronic Design, a scheme funded by the Engineering and Physical Sciences Research Council (EPSRC) and co-ordinated by the University of Southampton, which has enabled the UK microelectronic design research community to develop a common vision for the future of research in its area.

Key investigators are Professor Andrew Brown (University of Southampton), Professor Steve Furber (University of Manchester) and Professor Roger Woods (Queen’s University Belfast). Four grand challenges have emerged from a number of community meetings which the investigators believe will keep the UK at the forefront of electronics for the next 20 years.

They propose to:

Build an electronic brain – a computer inspired by the principles of operation of biological brains;

Develop pocket-sized supercomputers which will deliver as much computing power as a whole building of today’s machines, as part of a drive to deliver

‘Moore for less’ (Moore’s Law describes the exponential year-on-year growth in the number of transistors available on a silicon chip);

Create a mobile phone which will not need batteries but will use renewable energy sources;

Embark on a ‘Silicon meets life’ initiative, through which they plan to develop transparent interfaces between living organisms and electronics allowing active prosthesis and biometrics.

‘We have pulled together some of the best brains in the UK in this field to address some of the long-term challenges so that we can boost our input to the knowledge economy.’ said Dr Peter Wilson, one of the researchers on the project at the University of Southampton’s School of Electronics & Computer Science (ECS).

Professor Steve Furber added: ‘The UK has great strengths in microelectronic design, and the Common Vision activity has provided a focus for the high quality but distributed academic research. From the outset we have involved industrial researchers in our workshops and there has been a very positive reaction to what we have proposed. The next phase is to bring this to the attention of the wider industrial community.’

The grant ended in November and the organisers are now seeking feedback on their proposals and devising plans to move the challenges forward.

Helene Murphy | alfa
Further information:
http://www.soton.ac.uk

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>