Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cooler, faster, cheaper: Clemson researchers advance process to manufacture silicon chips

04.12.2007
The next generation of laptops, desk computers, cell phones and other semiconductor devices may get faster and more cost-effective with research from Clemson University.

“We’ve developed a new process and equipment that will lead to a significant reduction in heat generated by silicon chips or microprocessors while speeding up the rate at which information is sent,” says Rajendra Singh, D. Houser Banks Professor and director for the Center for Silicon Nanoelectronics at Clemson University.

The heart of many high-tech devices is the microprocessor that performs the logic functions. These devices produce heat depending on the speed at which the microprocessor operates. Higher speed microprocessors generate more heat than lower speed ones. Presently, dual-core or quad-core microprocessors are packaged as a single product in laptops so that heat is reduced without compromising overall speed of the computing system. The problem, according to Singh, is that writing software for these multicore processors, along with making them profitable, remains a challenge.

“Our new process and equipment improve the performance of the materials produced, resulting in less power lost through leakage. Based on our work, microprocessors can operate faster and cooler. In the future it will be possible to use a smaller number of microprocessors in a single chip since we’ve increased the speed of the individual microprocessors. At the same time, we’ve reduced power loss six-fold to a level never seen before. Heat loss and, therefore, lost power has been a major obstacle in the past,” said Singh.

Participants in the research included Aarthi Venkateshan, Kelvin F. Poole, James Harriss, Herman Senter, Robert Teague of Clemson and J. Narayan of North Carolina State University at Raleigh. Results were published in Electronics Letters, Oct. 11, 2007, Volume: 43, Issue: 21,
 pages: 1130-1131. The work reported here is covered by a broad-base patent of Singh and Poole issued to Clemson University in 2003.

The researchers say the patented technique has the potential to improve the performance and lower the cost of next-generation computer chips and a number of semiconductor devices, which include green energy conversion devices such as solar cells.

“The potential of this new process and equipment is the low cost of manufacturing, along with better performance, reliability and yield,” Singh said. “The semiconductor industry is currently debating whether to change from smaller (300 mm wafer) manufacturing tools to larger ones that provide more chips (450 mm). Cost is the barrier to change right now. This invention potentially will enable a reduction of many processing steps and will result in a reduction in overall costs.”

South Carolina has a growing semiconductor related industry, and the developers of this new process and equipment say it provides the potential for creating new jobs in the allied semiconductor equipment manufacturing industry.

Rajendra Singh | EurekAlert!
Further information:
http://www.clemson.edu

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>