Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cooler, faster, cheaper: Clemson researchers advance process to manufacture silicon chips

The next generation of laptops, desk computers, cell phones and other semiconductor devices may get faster and more cost-effective with research from Clemson University.

“We’ve developed a new process and equipment that will lead to a significant reduction in heat generated by silicon chips or microprocessors while speeding up the rate at which information is sent,” says Rajendra Singh, D. Houser Banks Professor and director for the Center for Silicon Nanoelectronics at Clemson University.

The heart of many high-tech devices is the microprocessor that performs the logic functions. These devices produce heat depending on the speed at which the microprocessor operates. Higher speed microprocessors generate more heat than lower speed ones. Presently, dual-core or quad-core microprocessors are packaged as a single product in laptops so that heat is reduced without compromising overall speed of the computing system. The problem, according to Singh, is that writing software for these multicore processors, along with making them profitable, remains a challenge.

“Our new process and equipment improve the performance of the materials produced, resulting in less power lost through leakage. Based on our work, microprocessors can operate faster and cooler. In the future it will be possible to use a smaller number of microprocessors in a single chip since we’ve increased the speed of the individual microprocessors. At the same time, we’ve reduced power loss six-fold to a level never seen before. Heat loss and, therefore, lost power has been a major obstacle in the past,” said Singh.

Participants in the research included Aarthi Venkateshan, Kelvin F. Poole, James Harriss, Herman Senter, Robert Teague of Clemson and J. Narayan of North Carolina State University at Raleigh. Results were published in Electronics Letters, Oct. 11, 2007, Volume: 43, Issue: 21,
 pages: 1130-1131. The work reported here is covered by a broad-base patent of Singh and Poole issued to Clemson University in 2003.

The researchers say the patented technique has the potential to improve the performance and lower the cost of next-generation computer chips and a number of semiconductor devices, which include green energy conversion devices such as solar cells.

“The potential of this new process and equipment is the low cost of manufacturing, along with better performance, reliability and yield,” Singh said. “The semiconductor industry is currently debating whether to change from smaller (300 mm wafer) manufacturing tools to larger ones that provide more chips (450 mm). Cost is the barrier to change right now. This invention potentially will enable a reduction of many processing steps and will result in a reduction in overall costs.”

South Carolina has a growing semiconductor related industry, and the developers of this new process and equipment say it provides the potential for creating new jobs in the allied semiconductor equipment manufacturing industry.

Rajendra Singh | EurekAlert!
Further information:

More articles from Information Technology:

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

nachricht Green Light for Galaxy Europe
15.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>