Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cooler, faster, cheaper: Clemson researchers advance process to manufacture silicon chips

04.12.2007
The next generation of laptops, desk computers, cell phones and other semiconductor devices may get faster and more cost-effective with research from Clemson University.

“We’ve developed a new process and equipment that will lead to a significant reduction in heat generated by silicon chips or microprocessors while speeding up the rate at which information is sent,” says Rajendra Singh, D. Houser Banks Professor and director for the Center for Silicon Nanoelectronics at Clemson University.

The heart of many high-tech devices is the microprocessor that performs the logic functions. These devices produce heat depending on the speed at which the microprocessor operates. Higher speed microprocessors generate more heat than lower speed ones. Presently, dual-core or quad-core microprocessors are packaged as a single product in laptops so that heat is reduced without compromising overall speed of the computing system. The problem, according to Singh, is that writing software for these multicore processors, along with making them profitable, remains a challenge.

“Our new process and equipment improve the performance of the materials produced, resulting in less power lost through leakage. Based on our work, microprocessors can operate faster and cooler. In the future it will be possible to use a smaller number of microprocessors in a single chip since we’ve increased the speed of the individual microprocessors. At the same time, we’ve reduced power loss six-fold to a level never seen before. Heat loss and, therefore, lost power has been a major obstacle in the past,” said Singh.

Participants in the research included Aarthi Venkateshan, Kelvin F. Poole, James Harriss, Herman Senter, Robert Teague of Clemson and J. Narayan of North Carolina State University at Raleigh. Results were published in Electronics Letters, Oct. 11, 2007, Volume: 43, Issue: 21,
 pages: 1130-1131. The work reported here is covered by a broad-base patent of Singh and Poole issued to Clemson University in 2003.

The researchers say the patented technique has the potential to improve the performance and lower the cost of next-generation computer chips and a number of semiconductor devices, which include green energy conversion devices such as solar cells.

“The potential of this new process and equipment is the low cost of manufacturing, along with better performance, reliability and yield,” Singh said. “The semiconductor industry is currently debating whether to change from smaller (300 mm wafer) manufacturing tools to larger ones that provide more chips (450 mm). Cost is the barrier to change right now. This invention potentially will enable a reduction of many processing steps and will result in a reduction in overall costs.”

South Carolina has a growing semiconductor related industry, and the developers of this new process and equipment say it provides the potential for creating new jobs in the allied semiconductor equipment manufacturing industry.

Rajendra Singh | EurekAlert!
Further information:
http://www.clemson.edu

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>