Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major advance in crystal structure prediction

30.11.2007
Dr. Marcus Neumann of Avant-garde Materials Simulation (AMS) in Paris has achieved a major advance in the prediction of the crystal structures of small organic molecules as part of an international scientific event.

He collaborated with researchers Drs. Frank Leusen and John Kendrick from the Institute of Pharmaceutical Innovation (IPI) at the University of Bradford, who applied AMS technology in the Blind Test in Crystal Structure Prediction, organised by the University of Cambridge and hosted by the Cambridge Crystallographic Data Centre (CCDC).

The three researchers have met the challenge by correctly predicting the crystal structures of all four Blind Test compounds using computational methods without any experimental input.

Crystal structures describe the periodically repeating arrangement of molecules in a material and determine many of a material’s properties, such as solubility, dissolution rate, hardness, colour and external shape. The ability to predict crystal structures could revolutionise the design of materials with novel properties.

In particular, the pharmaceutical industry would benefit from reliable methods of crystal structure prediction because pharmaceutical molecules are prone to crystallise in more than one crystal structure (or polymorph), depending on the conditions under which the molecule is crystallised. The specific polymorph that goes into a formulation must be strictly controlled to ensure consistency of delivery to the patient.

The team applied a new computer program, GRACE, recently developed by Avant-garde Materials Simulation, and predicted the crystal structures of all four test compounds correctly. Their results are a significant improvement over the outcome of previous Blind Tests. The other 14 participants in the event also achieved an improvement in the number of correctly predicted crystal structures, although no other participant correctly predicted all four crystal structures.

Dr Marcus Neumann, author of computer program GRACE for crystal structure prediction and Director of AMS, said: “Obviously we are delighted with these results but there is still plenty of room for improvements. Over the next few years the range of applicability will gradually extend towards more and more complex compounds such as highly flexible molecules, solvates and salts.”

Many approaches to the problem have been developed and these have been evaluated over the years in the Blind Tests. The research groups who had been developing methods for predicting crystal structures in the latest test were challenged to predict four recently determined crystal structures given only the chemical diagram of the molecules and conditions of crystallisation, with three predictions allowed per crystal.

The results of previous blind tests, in 1999, 2001 and 2004, demonstrated that the crystal structures of small organic molecules are hard to predict. The rates of success were low and no one method was consistently successful over the range of types of molecules studied.

Dr Graeme Day of the University of Cambridge, who co-ordinated this year’s challenge, said: “The results of this year’s test reflect significant development over the past few years. Things looked much less encouraging last time we held a blind test, but crystal structure prediction can now be seen as a real tool to be used alongside experimental studies, when designing new materials or developing a pharmaceutical molecule.”

Dr John Kendrick, Senior Researcher at the Institute of Pharmaceutical Innovation at the University of Bradford, said: “We are tremendously excited about this result. The success of our approach begins to answer many questions which have been posed over the years, and opens up several new avenues for leading-edge research.

“Having proven that the crystal structures of small organic compounds can be predicted reliably, we now face the challenge of predicting the relative stability of polymorphs as a function of crystallisation conditions to really capture the effect of temperature and solvent.”

Oliver Tipper | alfa
Further information:
http://www.avmatsim.eu/
http://www.ipi.ac.uk

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>