Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intelligent software helps build perfect robotic hand

29.11.2007
Scientists in Portsmouth and Shanghai are working on intelligent software that will take them a step closer to building the perfect robotic hand.

Using artificial intelligence, they are creating software which will learn and copy human hand movements.

They hope to replicate this in a robotic device which will be able to perform the dexterous actions only capable today by the human hand.

Dr Honghai Liu, senior lecturer at the University of Portsmouth’s Institute of Industrial Research, and Professor Xiangyang Zhu from the Robotics Institute at Jiao Tong University in Shanghai, were awarded a Royal Society grant to further their research.

The technology has the potential to revolutionise the manufacturing industry and medicine and scientists hope that in the future it could be used to produce the perfect artificial limb.

“A robotic hand which can perform tasks with the dexterity of a human hand is one of the holy grails of science,” said Dr Honghai Liu, who lectures artificial intelligence at the University’s Institute of Industrial Research. The Institute specialises in artificial intelligence including intelligent robotics, image processing and intelligent data analysis.

He said: “We are talking about having super high level control of a robotic device.

Nothing which exists today even comes close.”

Dr Liu used a cyberglove covered in tiny sensors to capture data about how the human hand moves. It was filmed in a motion capture suite by eight high-resolution CCD cameras with infrared illumination and measurement accuracy up to a few millimetres.

Professor Xiangyang Zhu from The Robotics Institute at the Jiao Tong University in Shanghai, which is recognised as one of the world-class research institutions on robotics, said that the research partnership would strengthen the interface between artificial intelligence techniques and robotics and pave the way for a new chapter in robotics technology.

“Humans move efficiently and effectively in a continuous flowing motion, something we have perfected over generations of evolution and which we all learn to do as babies. Developments in science mean we will teach robots to move in the same way.”

Lisa Egan | alfa
Further information:
http://www.port.ac.uk

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>