Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blue dye could hold the key to super processing power

29.11.2007
A technique for controlling the magnetic properties of a commonly used blue dye could revolutionise computer processing power, according to research published recently in Advanced Materials.

Scientists have demonstrated that they can control the properties in a dye known as Metal Phthalocyanine, or MPc, with the use of magnetism.

Though this technology is still in its infancy, researchers claim that the ability to control the magnetic properties of MPc could have the potential to dramatically improve information processing in the future.

iPods, CD read/writers, and other electronic devices already use magnetism as a system for signalling to process and store information.

Current technology, however, has limitations. According to Moore’s Law - a theory for describing the historical trend of computer hardware development – computer technology will eventually reach a ‘dead end’ as options for shrinking the size and increasing memory run out.

Dr Sandrine Heutz, from Imperial College London’s Department of Materials, and scientists from the London Centre for Nanotechnology, believe results from recent experiments with MPc could provide the answer.

MPc contains carbon, nitrogen and hydrogen and can also contain a wide range of atoms at its centre. In their work they used either a copper or manganese metal atom at its centre. Scientists first observed MPc in 1907 and it has been used ever since as a dye in textiles and paper and has even been investigated for use as an anti-cancer agent.

Dr Heutz made a scientific breakthrough when she experimented with clusters of MPc. She found that she could make the metal centres of MPc have tiny magnetic interactions with one another. Like placing two compasses together and controlling which way the arrows point, she found that she could control how the metal centres of MPc spin in relation to one another.

The secret to controlling this spin lies in the way Dr Heutz experimented with MPc. She grew stacks of MPc in crystal structures on plastic surfaces and then experimented with the preparation conditions. She grew them at room temperature; applied heat; chemically altered the plastic surfaces that the crystals grew on; and changed the way the crystals grew. All these different elements altered the way the metal centres interacted with each other.

After three years of experimentation, the team can now control a set of microscopic interactions between the molecules.

Current information processing uses a switching process of zeros and ones to process and store ‘bits’ of information. Dr Heutz believes she could improve on this process to increase memory. So far the team can switch the interactions from ‘on/off’ and change the state of the interaction from ‘on’ to a different type of ‘on’. They are still experimenting with ways to turn the interaction ‘off/on’. When they find this last interaction Dr Heutz believes she will have a superior set of molecular signals for information processing and storage.

“Electronic devices already use magnetism as a system for processing and storing information. These experiments prove that we will be able to replace the current electro-magnetic process with a magnetic interaction between molecules of MPc,” said Dr Heutz.

Dr Heutz says it could take a further five years to practically apply this technology. When the refinements are complete she believes exploiting MPc molecules will have enormous benefits in the development of ‘spintronics’ - a process which relies on the spin of atoms or molecules to store trillions of bits of information per square inch.

She also believes these molecular interactions have the potential to process ‘qubits’ of information in quantum computing. According to current theories, quantum computing is expected to harness the properties of quantum mechanics to perform tasks that classical computers cannot do in a reasonable time.

“We are still a long way off from applying this technology to the home PC. However, in five years time our experiments will demonstrate that we will have the power to unleash the vast potential of information processing at the molecular level,” she said.

This research was published in Advanced Materials and was carried out by the London Centre for Nanotechnology - a joint enterprise between Imperial College London and University College London. It was funded by the Royal Society (Dorothy Hodgkin Fellowship and Wolfson Research Merit Award); Research Councils UK and the Engineering and Physical Sciences Research Council (EPSRC).

Colin Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>