Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chalmers first with integrated receiver for high frequency applications

28.11.2007
As the first research group in the world, researchers at Chalmers have succeeded in combining a receiver for high frequencies with an antenna on a small chip.

The receiver is just a few square millimetre and is suitable for new safety systems, image sensors, and radio communication for high bitrates. The receiver is an electronic circuit including antenna, low noise amplifier, and frequency converter monolithically integrated on gallium arsenide.

"This is a breakthrough in our research. Our result opens the possibility to manufacture systems for very high frequencies within the so called 'THZ-electronics' area, to a relatively low cost. In the next phase of this project even more functions can be integrated on the same chip", according to Herbert Zirath, professor at the department of Microwave Electronics.

This circuit can for instance be used in radiometer systems in future safety systems looking for concealed weapons without personal visitation. Other applications for this circuit are imaging sensors that can look through darkness, smoke or fog. This is an important safety function for vehicles such as cars and aircrafts.

"Thanks to this technology, we now have the possibility of integrating imaging sensors by using circuits of a few square millimetre which is much smaller that the present technology at a lower cost. For automotive applications such as cars, aircrafts and satellites, the size and weight is of utmost importance. The present systems consist of many pieces and demands several cubic decimetres volume", says Herbert Zirath.

The new circuit is designed to work at the frequency of 220 gigahertz, but this is not an upper limit. According to professor Zirath, the technology can be used up to and above 300GHz in a near future.

The technology is also interesting for wireless data communication because, due to the very high bandwidth, data rate well above 10 Gbit/s is possible to realize in future radio links. Together with Omnisys Instruments in Gothenburg, we are also implementing receivers for future earth observation satellites for environmental studies and weather forecasts at frequencies 118 and 183 GHz, using the same technology.

This work is the results of a co-operation between Chalmers, Saab Microwave Systems, Omnisys Instruments AB, FOI, The Fraunhofer Institute IAF in Freiburg and FGAN, Germany, within the project "nanoComp".

For more information contact:
Professor Herbert Zirath, Microwave Electronics Laboratory, Department of Micro technology and Nanoscience MC2, Chalmers University of Technology

Tel: +46 31-772 18 52

PhD student Sten Gunnarsson, Department of Micro technology and Nanoscience MC2, Chalmers University of Technology

Tel: +46 31- 772 18 94

Sofie Hebrand | idw
Further information:
http://www.vr.se

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>