Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chalmers first with integrated receiver for high frequency applications

28.11.2007
As the first research group in the world, researchers at Chalmers have succeeded in combining a receiver for high frequencies with an antenna on a small chip.

The receiver is just a few square millimetre and is suitable for new safety systems, image sensors, and radio communication for high bitrates. The receiver is an electronic circuit including antenna, low noise amplifier, and frequency converter monolithically integrated on gallium arsenide.

"This is a breakthrough in our research. Our result opens the possibility to manufacture systems for very high frequencies within the so called 'THZ-electronics' area, to a relatively low cost. In the next phase of this project even more functions can be integrated on the same chip", according to Herbert Zirath, professor at the department of Microwave Electronics.

This circuit can for instance be used in radiometer systems in future safety systems looking for concealed weapons without personal visitation. Other applications for this circuit are imaging sensors that can look through darkness, smoke or fog. This is an important safety function for vehicles such as cars and aircrafts.

"Thanks to this technology, we now have the possibility of integrating imaging sensors by using circuits of a few square millimetre which is much smaller that the present technology at a lower cost. For automotive applications such as cars, aircrafts and satellites, the size and weight is of utmost importance. The present systems consist of many pieces and demands several cubic decimetres volume", says Herbert Zirath.

The new circuit is designed to work at the frequency of 220 gigahertz, but this is not an upper limit. According to professor Zirath, the technology can be used up to and above 300GHz in a near future.

The technology is also interesting for wireless data communication because, due to the very high bandwidth, data rate well above 10 Gbit/s is possible to realize in future radio links. Together with Omnisys Instruments in Gothenburg, we are also implementing receivers for future earth observation satellites for environmental studies and weather forecasts at frequencies 118 and 183 GHz, using the same technology.

This work is the results of a co-operation between Chalmers, Saab Microwave Systems, Omnisys Instruments AB, FOI, The Fraunhofer Institute IAF in Freiburg and FGAN, Germany, within the project "nanoComp".

For more information contact:
Professor Herbert Zirath, Microwave Electronics Laboratory, Department of Micro technology and Nanoscience MC2, Chalmers University of Technology

Tel: +46 31-772 18 52

PhD student Sten Gunnarsson, Department of Micro technology and Nanoscience MC2, Chalmers University of Technology

Tel: +46 31- 772 18 94

Sofie Hebrand | idw
Further information:
http://www.vr.se

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>