Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Galileo signal reflections used for monitoring waves and weather at sea

27.11.2007
Surrey Satellite Technology Ltd (SSTL) and the University of Surrey have succeeded for the first time in capturing a Galileo signal reflected off the ocean surface in orbit, demonstrating the potential for determining the weather at sea with remote sensing satellites.

The pioneering GPS Reflectometry Experiment was launched onboard SSTL’s UK-DMC satellite in 2003 to demonstrate the use of GPS reflections to determine the roughness of the ocean, using a method called “bistatic radar” or “forward scatterometry”. This experiment has now successfully detected a Galileo satellite navigation signal reflected by the ocean’s surface. GIOVE-A, the first Galileo demonstration satellite, also built by SSTL, was commissioned by the European Space Agency and has been transmitting prototype Galileo signals since its launch in December 2005.

Dr Martin Unwin, head of the Global Navigation Satellite Systems (GNSS) / GPS team at SSTL explained: “This is an important achievement in remote sensing and demonstrates the potential offered by Galileo for scientific purposes. A constellation of small satellites could be deployed at low cost to take measurements over the oceans where there are large gaps in forecast knowledge at present. An improved measurement system in space could be used to warn mariners of storms and to provide data for global climate change models - potentially even to detect Tsunamis.”

In early November, 20 seconds of data were captured in orbit above the Arafura Sea, north of Australia, and downloaded to Surrey for processing. Whilst the orbiting experiment on UK-DMC is not optimised for Galileo signals, enough of the reflected signal energy was received to allow the detection and plotting of the weak signal after processing by University of Surrey PhD student, Philip Jales. The shape of the reflection gives an indication of the sea roughness and hence the weather at that place and time, where the wind speed was around 14 mph (22 km/h).

Dr Unwin continued: “Signals from Galileo, in conjunction with GPS and the Russian and Chinese systems, Glonass and Compass, can all be used as part of a new tool for ocean sensing. The future high bandwidth signals transmitted by Galileo, in particular, will enable higher resolution measurements of special interest to scientists, for example, in resolving wave heights”

GPS Reflectometry is of great interest to engineers and scientists as a cost effective means of remote sensing. Firstly, a special transmitter is not required because GPS signals are already broadcast to the Earth 24 hours a day. Also, a satellite dedicated to GPS reflectometry would only need to carry a modified miniaturised GPS/Galileo receiver and an antenna, which could potentially be accommodated on a tiny 10 kg satellite platform at low cost, enabling multiple satellites on a single launch.

The UK-DMC Reflectometry Experiment has also previously been used to detect GPS signals reflected off ice and, surprisingly, dry land. The value of these measurements has yet to be fully explored but they may be used as inputs for climate modelling.

A future revision of the experiment, the “GNSS Reflectometry Instrument” is now being designed at Surrey with a view to flight on a future satellite mission. It is being designed specifically to receive Galileo signals as well as those from GPS, with the intention of real time processing. “The sooner Galileo is up and transmitting the better” said Dr Unwin.

Robin Wolstenholme | alfa
Further information:
http://www.sstl.co.uk

More articles from Information Technology:

nachricht Defining the backbone of future mobile internet access
21.07.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht Researchers create new technique for manipulating polarization of terahertz radiation
20.07.2017 | Brown University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>