Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Galileo signal reflections used for monitoring waves and weather at sea

27.11.2007
Surrey Satellite Technology Ltd (SSTL) and the University of Surrey have succeeded for the first time in capturing a Galileo signal reflected off the ocean surface in orbit, demonstrating the potential for determining the weather at sea with remote sensing satellites.

The pioneering GPS Reflectometry Experiment was launched onboard SSTL’s UK-DMC satellite in 2003 to demonstrate the use of GPS reflections to determine the roughness of the ocean, using a method called “bistatic radar” or “forward scatterometry”. This experiment has now successfully detected a Galileo satellite navigation signal reflected by the ocean’s surface. GIOVE-A, the first Galileo demonstration satellite, also built by SSTL, was commissioned by the European Space Agency and has been transmitting prototype Galileo signals since its launch in December 2005.

Dr Martin Unwin, head of the Global Navigation Satellite Systems (GNSS) / GPS team at SSTL explained: “This is an important achievement in remote sensing and demonstrates the potential offered by Galileo for scientific purposes. A constellation of small satellites could be deployed at low cost to take measurements over the oceans where there are large gaps in forecast knowledge at present. An improved measurement system in space could be used to warn mariners of storms and to provide data for global climate change models - potentially even to detect Tsunamis.”

In early November, 20 seconds of data were captured in orbit above the Arafura Sea, north of Australia, and downloaded to Surrey for processing. Whilst the orbiting experiment on UK-DMC is not optimised for Galileo signals, enough of the reflected signal energy was received to allow the detection and plotting of the weak signal after processing by University of Surrey PhD student, Philip Jales. The shape of the reflection gives an indication of the sea roughness and hence the weather at that place and time, where the wind speed was around 14 mph (22 km/h).

Dr Unwin continued: “Signals from Galileo, in conjunction with GPS and the Russian and Chinese systems, Glonass and Compass, can all be used as part of a new tool for ocean sensing. The future high bandwidth signals transmitted by Galileo, in particular, will enable higher resolution measurements of special interest to scientists, for example, in resolving wave heights”

GPS Reflectometry is of great interest to engineers and scientists as a cost effective means of remote sensing. Firstly, a special transmitter is not required because GPS signals are already broadcast to the Earth 24 hours a day. Also, a satellite dedicated to GPS reflectometry would only need to carry a modified miniaturised GPS/Galileo receiver and an antenna, which could potentially be accommodated on a tiny 10 kg satellite platform at low cost, enabling multiple satellites on a single launch.

The UK-DMC Reflectometry Experiment has also previously been used to detect GPS signals reflected off ice and, surprisingly, dry land. The value of these measurements has yet to be fully explored but they may be used as inputs for climate modelling.

A future revision of the experiment, the “GNSS Reflectometry Instrument” is now being designed at Surrey with a view to flight on a future satellite mission. It is being designed specifically to receive Galileo signals as well as those from GPS, with the intention of real time processing. “The sooner Galileo is up and transmitting the better” said Dr Unwin.

Robin Wolstenholme | alfa
Further information:
http://www.sstl.co.uk

More articles from Information Technology:

nachricht Cloud technology: Dynamic certificates make cloud service providers more secure
15.01.2018 | Technische Universität München

nachricht New discovery could improve brain-like memory and computing
10.01.2018 | University of Minnesota

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>