Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnological magnets will bring smaller and more powerful hard disks

21.11.2007
Magnetic materials, also known as magnets, have a wide range of applications in daily life. They are part of the core of electric engines, from those used in cars to CD systems. Computers´ hard disks are made of a magnetic material, very useful in medicine for imagenology systems, as a contrast element in nuclear magnetic resonance measurements and computerized axial tomographs.

The Institute of Materials and Reagents (IMRE) of the Universty of Havana, with the contribution of the Technical University of Vienna and the Federal University of Rio Grande do Sul in Brazil are carrying out a micro-structural study of two types of magnetic materials: Magnetically hard materials with submicronic micro-structure and nano-particulate systems with supersoft magnetic or superparamagnetic response.

Transmission Electronic Microscopy

“The common point of the proposal, according to Dr Ernesto Estévez Rams, main author of the research work, is the transmission electronic microscopy (TEM) study of magnetic materials that show the occurrence of a nanometric microstructure, determinant in the magnetic behaviour”. As this micro-structure appears the grain size reduces to the order of nanometres and the intrinsic properties for volumetric materials stop behaving the same way.

“The study is focused in new generation magnets manufactured with nano-technological methods, this is, magnets whose components have been designed on a scale one hundred thousand times thinner than human hair”. This work intends to understand in depth the composition of this type of materials in order to find optimization channels to make them more suitable for different applications.

It is important to know the relationship between microstructure and physical properties, and here is where the contribution of this research work lies. It was possible to determinate for the first time the mechanism of anomalous growth in HDDR-NdFeB materials, consisting in the abundant growth of certain parts of the material at the expense of others. This phenomenon brings as a consequence the decrease of its physical properties; therefore, clarifying the mechanism of this anomalous growth is an essential step for its later solution.

Another aspect of the research work, which resulted in the generation of a patent, was the microstructural behaviour of Barium Hexaferrite Nanoparticles and its generation route. This study was carried out under different synthesis conditions, and for the first time, it was possible to reduce the temperature to 250 C. The manufacture process was modified and material dust was obtained with a well-controlled particle size, which reached the size of several nanometres. This type of materials are considered excellent means for information storage, as their use can multiply several times the capacity of current hard disks.

Finally, they studied the nanogranular microstructura of the superparamagnetic system Co-Cu and they identified for the first time spinoidal decomposition as an essential mechanism in the system magneto-electric response. This type of magnetic material is used in hard disks´ reading and writing heads; therefore, improving their properties contributes to the future manufacture of smaller heads which are able to read smaller information units. “Spinoidal decomposition was identified for the first time as an essential mechanism in the system magneto-electric response, opening a new research line”, says Dr Estévez Rams.

Antonio Marín Ruiz | alfa
Further information:
http://www.imre.oc.uh.cu

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>