Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnological magnets will bring smaller and more powerful hard disks

21.11.2007
Magnetic materials, also known as magnets, have a wide range of applications in daily life. They are part of the core of electric engines, from those used in cars to CD systems. Computers´ hard disks are made of a magnetic material, very useful in medicine for imagenology systems, as a contrast element in nuclear magnetic resonance measurements and computerized axial tomographs.

The Institute of Materials and Reagents (IMRE) of the Universty of Havana, with the contribution of the Technical University of Vienna and the Federal University of Rio Grande do Sul in Brazil are carrying out a micro-structural study of two types of magnetic materials: Magnetically hard materials with submicronic micro-structure and nano-particulate systems with supersoft magnetic or superparamagnetic response.

Transmission Electronic Microscopy

“The common point of the proposal, according to Dr Ernesto Estévez Rams, main author of the research work, is the transmission electronic microscopy (TEM) study of magnetic materials that show the occurrence of a nanometric microstructure, determinant in the magnetic behaviour”. As this micro-structure appears the grain size reduces to the order of nanometres and the intrinsic properties for volumetric materials stop behaving the same way.

“The study is focused in new generation magnets manufactured with nano-technological methods, this is, magnets whose components have been designed on a scale one hundred thousand times thinner than human hair”. This work intends to understand in depth the composition of this type of materials in order to find optimization channels to make them more suitable for different applications.

It is important to know the relationship between microstructure and physical properties, and here is where the contribution of this research work lies. It was possible to determinate for the first time the mechanism of anomalous growth in HDDR-NdFeB materials, consisting in the abundant growth of certain parts of the material at the expense of others. This phenomenon brings as a consequence the decrease of its physical properties; therefore, clarifying the mechanism of this anomalous growth is an essential step for its later solution.

Another aspect of the research work, which resulted in the generation of a patent, was the microstructural behaviour of Barium Hexaferrite Nanoparticles and its generation route. This study was carried out under different synthesis conditions, and for the first time, it was possible to reduce the temperature to 250 C. The manufacture process was modified and material dust was obtained with a well-controlled particle size, which reached the size of several nanometres. This type of materials are considered excellent means for information storage, as their use can multiply several times the capacity of current hard disks.

Finally, they studied the nanogranular microstructura of the superparamagnetic system Co-Cu and they identified for the first time spinoidal decomposition as an essential mechanism in the system magneto-electric response. This type of magnetic material is used in hard disks´ reading and writing heads; therefore, improving their properties contributes to the future manufacture of smaller heads which are able to read smaller information units. “Spinoidal decomposition was identified for the first time as an essential mechanism in the system magneto-electric response, opening a new research line”, says Dr Estévez Rams.

Antonio Marín Ruiz | alfa
Further information:
http://www.imre.oc.uh.cu

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>