Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers push transmission rate of copper cables

19.11.2007
You may not be able to get blood out of a turnip, but according to Penn State engineers, you can increase the data transmission of Category-7 copper cables used to connect computers to each other and the Internet.

"Working with NEXANS, the company that manufactures the cable, we have examined the possibility of sending digital data at a rate of 100 gigabits per second over 100 meters of Category-7 copper cable," says Mohsen Kavehrad, the W.L. Weiss Endowed Chair professor of electrical engineering. "These are the current, new generation of Ethernet cables."

These cables are used to connect computers within a room or a building or to create parallel computing systems.

While the long distance lines of most Internet systems are glass fiber optic cables, which are very fast, copper cable is generally used for short distances.

"In home networks, for example, it is expensive to use fiber optic cabling," says Ali Enteshari, graduate student in electrical engineering who presented the team's methods to the IEEE High Speed Study Group today (Nov. 14) in Atlanta.

All transmission cables are limited by the distance they can transmit data without degradation of the signal. Before errors and interference make the signals non-recoverable, cable systems use repeaters – which are similar to computer modems – to capture, correct or recover data, and resend it. The distance between repeaters depends on the cable and the approach used by the modem to correct errors.

"What we are offering is a less expensive solution and one that is easier to build," says Jarir Fadlullah, graduate student in electrical engineering.

Using information on specifications and characteristics of the cables from NEXANS, the researchers modeled the cable with all its attributes including modeling crosstalk. They then designed a transmitter/receiver equipped with an interference canceller that could transfer up to 100 gigabits using error correcting and equalizing approaches. Ethernet cable like the Category 7 is made up of four pairs of twisted wires shielded to reduce crosstalk. Category 7 is heavier weight wire with better shielding than Category 5 cable. Kavehrad's group did similar analysis on the Category 5 cables in 2003.

"A rate of 100 gigabit over 70 meters is definitely possible, and we are working on extending that to 100 meters, or about 328 feet," says Enteshari. "However, the design of a 100 gigabit modem might not be physically realizable at this time as it is technology limited. We are providing a roadmap to design a high speed modem for 100 gigabits."

The researchers believe that two or three generations in the future, the technology of chip circuitry will allow these modem designs to be built. Currently, chip design is at about 65 nanometers, but they expect in the next two generations to get to what is required, says Kavehrad.

The amount of data encompassed by 100 gigabits is amazing. The entire Encyclopedia Britannica contains 1 gigabyte of information. A byte is equivalent to 8 bits, so 1 Gigabyte is equal to 8 gigabits. A rate of 100 gigabits per second over 100 meters is the transmission of 12.5 Encyclopedia Britannica sets per second.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Information Technology:

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

nachricht PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems
11.12.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>