Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new model to simulate forest growth

14.11.2007
The Algorithm Engineering Group at the UPM’s School of Computing has developed, in conjunction with a forestry engineer from the University of Córdoba, a simulator modelling the evolution of a forest. This tool, called Vorest, is a forestry engineering research aid and an excellent example of how to apply computational geometry to real-world problems.

Tree development within a forest largely depends on how much space they have both on the ground and in the air, around the treetops. Trees compete to dominate the space they need to develop, and this relates these biological systems directly to Voronoi diagrams. A Voronoi diagram can be seen as the space partition as a result of expanding the sites in the diagram.

Vorest users can examine what impact the space the trees take up has on the development of a forest. This includes the space transfer dynamics between neighbouring trees dictated by their life strategies, and the outcome in terms of tree growth and mortality. Vorest’s simulation process is based on the fact that any tree is surrounded by an influence region of variable size that determines the future growth of the individual tree.

User flexibility

Vorest automatically calculates the influence regions, but offers users a wide range of options for deciding how growth should be simulated depending on this region. The application outputs two key classes of visual information.

First, Vorest represents the Voronoi diagram modelling the influence regions of each of the trees loaded in the program at any point of their growth. Second, it generates a more or less detailed representation of what the trees could really be expected to look like in their natural environment. The application then is able to generate a detailed 3D scene of what the forest really looks like.

Users will be able to manipulate this scene using textures to improve soil appearance or even by configuring the SkyBox representation. This produces a basic, but effective 3D background effect. The application has a straightforward and easy-to-use interface, and users have no need of computing expertise to operate the system.

The model was developed by Manuel Abellanas and Carlos Vilas from the Department of Applied Mathematics at the Universidad Politécnica de Madrid’s School of Computing and by Begoña Abellanas from the Department of Forestry Engineering at the Universidad de Córdoba. They were advised by Professor Oscar García from Canada’s Northern British Columbia University, who was a visiting professor at the Department of Applied Mathematics this year.

Useful models

Forest simulation models or forest growth models are very useful for forest managers and forestry researchers in many respects. A forest growth model aims to describe the dynamics of the forest closely and precisely enough to meet the needs of the forester or forestry researcher.

Dynamics includes all the change processes throughout the forest’s or tree’s lifetime. The primary changes in the forestry field are related to the incorporation, growth and death of trees, a forest’s key asset. There are many forest growth models. Vorest models the individual tree.

The most common uses of these models for managers are to forecast timber production or, less often, other forestry products (cones, cork, etc.) and to simulate different forestry management alternatives with a view to decision making. The models help to forecast what long-term effects a forestry management intervention is likely to have on both timber production and the future conditions of the actual forest, as well as the impact of interventions on other forest values.

For forestry researchers, models are most useful as tools for researching forest dynamics. A forest growth model like Vorest describes the dynamics of the forest closely and precisely enough to meet the needs of forestry managers or forestry researchers.

Eduardo Martínez | alfa
Further information:
http://www.fi.upm.es/?pagina=536

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>