Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

YES2 team claims a space tether world record

09.11.2007
On 25 September, students around the world watched with bated breath as their creation, the second Young Engineers Satellite (YES2) experiment, reached its dramatic conclusion.

A day before the Foton-M3 spacecraft returned to Earth, a small re-entry capsule, named Fotino, was to be released from the end of a 30 km tether, the longest such structure ever to be deployed in space. However, no signal was ever received from Fotino and its fate has been uncertain ever since.

First indications, based on real-time data processed by the YES2 flight computer and released by Russian mission controllers, suggested that the tether only unwound about 8.5 km before Fotino was cut free, but engineers wanted to know the full story of Fotino’s final hours. Now, after weeks of careful analysis, the YES2 team has informed the ESA Mission Review Board of its findings.

“All of the data we now have available point to the fact that the tether unwound fully before the Fotino capsule was released,” said Roger Walker, YES2 project manager for ESA’s Education Office. “This means that the most challenging part of the mission was completed and that YES2 smashed the world record for the longest man-made object flown in space.”

“This outcome can be regarded as a triumph for the students who contributed many hours of hard work to bring YES2 to fruition.”

The team of engineers from ESA’s technical centre, ESTEC, and prime contractor Delta-Utec has been piecing together the events of 25 September using evidence from a number of direct and indirect sources. Some of the most important clues have been provided by the YES2 data stored in the TeleSupport Unit, which recorded all of the data from the ESA experiments on Foton-M3. This data included raw unprocessed data about the rate at which the tether was unwinding.

“By looking at the data from the tether deployment speed sensors, we are able to determine how much of the tether was unwound and how quickly it deployed,” said Michiel Kruijff, lead system engineer for Delta-Utec. “We can tell that the deployment was accelerating in the later stages, rather than slowing down as we first believed. We have also found that the tether deployed to a minimum of 29.5 km, or more likely to its full length of 31.7 km, at high speed.”

Other indirect evidence comes from the orbital behaviour of the Foton-M3 spacecraft. Data from the U.S. Space Surveillance Network, which was tracking Foton-M3, show that the spacecraft moved about 1300 metres higher in its orbit when the Fotino capsule was cut free from its tether, as expected for a 30 km tether. However, the tracking data offer no evidence that Fotino remained in orbit around the Earth, leading the YES2 team to conclude that it re-entered the atmosphere immediately after its release.

“It seems that the braking and control mechanism did not work as expected in the later stages of deployment due to an intermittent fault in the flight computer’s real-time processing of the deployment sensor data,” said Marco Stelzer, the mission analyst in the ESA YES2 team. “This leaves us with two possible scenarios. The tether may have unwound so quickly that it broke free from the reel with the capsule still attached, or the tether jerked to a halt at the end of its deployment, allowing the capsule to be released close to its nominal position.”

Further clues will become available in the coming weeks after the YES2 team receives the complete acceleration and orientation dataset from the DIMAC (Direct Measurement micro-Accelerometer) experiment that flew on board Foton-M3. Additional information about the orbit of Foton is also expected from GPS data acquired by a student experiment from Samara State Aerospace University, one of four University Centres of Expertise that contributed significantly to the project.

“Unfortunately, we received no data from Fotino, so at the present time we have no way of knowing the fate of small capsule,” said Roger Walker. “It may have burnt up on re-entry, it may have crash-landed, it may have touched down in difficult terrain somewhere in Turkmenistan, Kazakhstan or Siberia, or its radio beacon did not transmit. However, this is the first time that a tether has de-orbited a re-entry capsule, therefore we are very satisfied that the most novel and challenging parts of the SpaceMail concept have been demonstrated.”

Further information

YES2 was one of the ESA-provided payloads on board the Foton-M3 microgravity mission. The Foton spacecraft and the piggybacking YES2 payload were launched by a Soyuz rocket from Baikonur, Kazakhstan, on 14 September. The YES2 experiment was installed on top of the battery pack of the Foton-M3 capsule.

The 6 kg Fotino capsule was attached to the end of a 0.5 mm thick, 31.7 km long tether. Once the tether unwound and deployment stopped smoothly at 30km, the Fotino capsule was to be automatically released by a pyrotechnic device and sent on a return path to Earth’s surface through the atmosphere and landing safely by parachute in a pre-determined location. The objective was to demonstrate the ‘SpaceMail’ concept of delivering parcels back to Earth from an orbiting spacecraft using only a tether.

Almost 500 students from most ESA Member States and Associated States, together with the United States, Russia, Japan and Australia, worked on YES2. Although these were mainly involved in the preliminary design phase, some 60 students participated in the latter stages of developing and building hardware and software.

Future education satellite projects already under development by the ESA Education Office include the European Student Earth Orbiter (ESEO), to be launched in 2010, and the European Student Moon Orbiter (ESMO), currently planned for 2011.

Roger Walker | alfa
Further information:
http://www.esa.int/esaCP/SEMUI053R8F_index_0.html

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>