Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

YES2 team claims a space tether world record

09.11.2007
On 25 September, students around the world watched with bated breath as their creation, the second Young Engineers Satellite (YES2) experiment, reached its dramatic conclusion.

A day before the Foton-M3 spacecraft returned to Earth, a small re-entry capsule, named Fotino, was to be released from the end of a 30 km tether, the longest such structure ever to be deployed in space. However, no signal was ever received from Fotino and its fate has been uncertain ever since.

First indications, based on real-time data processed by the YES2 flight computer and released by Russian mission controllers, suggested that the tether only unwound about 8.5 km before Fotino was cut free, but engineers wanted to know the full story of Fotino’s final hours. Now, after weeks of careful analysis, the YES2 team has informed the ESA Mission Review Board of its findings.

“All of the data we now have available point to the fact that the tether unwound fully before the Fotino capsule was released,” said Roger Walker, YES2 project manager for ESA’s Education Office. “This means that the most challenging part of the mission was completed and that YES2 smashed the world record for the longest man-made object flown in space.”

“This outcome can be regarded as a triumph for the students who contributed many hours of hard work to bring YES2 to fruition.”

The team of engineers from ESA’s technical centre, ESTEC, and prime contractor Delta-Utec has been piecing together the events of 25 September using evidence from a number of direct and indirect sources. Some of the most important clues have been provided by the YES2 data stored in the TeleSupport Unit, which recorded all of the data from the ESA experiments on Foton-M3. This data included raw unprocessed data about the rate at which the tether was unwinding.

“By looking at the data from the tether deployment speed sensors, we are able to determine how much of the tether was unwound and how quickly it deployed,” said Michiel Kruijff, lead system engineer for Delta-Utec. “We can tell that the deployment was accelerating in the later stages, rather than slowing down as we first believed. We have also found that the tether deployed to a minimum of 29.5 km, or more likely to its full length of 31.7 km, at high speed.”

Other indirect evidence comes from the orbital behaviour of the Foton-M3 spacecraft. Data from the U.S. Space Surveillance Network, which was tracking Foton-M3, show that the spacecraft moved about 1300 metres higher in its orbit when the Fotino capsule was cut free from its tether, as expected for a 30 km tether. However, the tracking data offer no evidence that Fotino remained in orbit around the Earth, leading the YES2 team to conclude that it re-entered the atmosphere immediately after its release.

“It seems that the braking and control mechanism did not work as expected in the later stages of deployment due to an intermittent fault in the flight computer’s real-time processing of the deployment sensor data,” said Marco Stelzer, the mission analyst in the ESA YES2 team. “This leaves us with two possible scenarios. The tether may have unwound so quickly that it broke free from the reel with the capsule still attached, or the tether jerked to a halt at the end of its deployment, allowing the capsule to be released close to its nominal position.”

Further clues will become available in the coming weeks after the YES2 team receives the complete acceleration and orientation dataset from the DIMAC (Direct Measurement micro-Accelerometer) experiment that flew on board Foton-M3. Additional information about the orbit of Foton is also expected from GPS data acquired by a student experiment from Samara State Aerospace University, one of four University Centres of Expertise that contributed significantly to the project.

“Unfortunately, we received no data from Fotino, so at the present time we have no way of knowing the fate of small capsule,” said Roger Walker. “It may have burnt up on re-entry, it may have crash-landed, it may have touched down in difficult terrain somewhere in Turkmenistan, Kazakhstan or Siberia, or its radio beacon did not transmit. However, this is the first time that a tether has de-orbited a re-entry capsule, therefore we are very satisfied that the most novel and challenging parts of the SpaceMail concept have been demonstrated.”

Further information

YES2 was one of the ESA-provided payloads on board the Foton-M3 microgravity mission. The Foton spacecraft and the piggybacking YES2 payload were launched by a Soyuz rocket from Baikonur, Kazakhstan, on 14 September. The YES2 experiment was installed on top of the battery pack of the Foton-M3 capsule.

The 6 kg Fotino capsule was attached to the end of a 0.5 mm thick, 31.7 km long tether. Once the tether unwound and deployment stopped smoothly at 30km, the Fotino capsule was to be automatically released by a pyrotechnic device and sent on a return path to Earth’s surface through the atmosphere and landing safely by parachute in a pre-determined location. The objective was to demonstrate the ‘SpaceMail’ concept of delivering parcels back to Earth from an orbiting spacecraft using only a tether.

Almost 500 students from most ESA Member States and Associated States, together with the United States, Russia, Japan and Australia, worked on YES2. Although these were mainly involved in the preliminary design phase, some 60 students participated in the latter stages of developing and building hardware and software.

Future education satellite projects already under development by the ESA Education Office include the European Student Earth Orbiter (ESEO), to be launched in 2010, and the European Student Moon Orbiter (ESMO), currently planned for 2011.

Roger Walker | alfa
Further information:
http://www.esa.int/esaCP/SEMUI053R8F_index_0.html

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>