Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New computer program automates chip debugging

07.11.2007
Fixing design bugs and wrong wire connections in computer chips after they've been fabricated in silicon is a tedious, trial-and-error process that often costs companies millions of dollars and months of time-to-market.

Engineering researchers at the University of Michigan say it doesn't have to be that way. They've developed a new technology to automate "post-silicon debugging."

"Today's silicon technology has reached such levels of small-scale fabrication and of sheer complexity that it is almost impossible to produce computer chips that work correctly under all scenarios," said Valeria Bertacco, assistant professor of electrical engineering and computer science and co-investigator in the new technology. "Almost all manufacturers must produce several prototypes of a given design before they attain a working chip."

FogClear, as the new method is called, uses puzzle-solving search algorithms to diagnose problems early on and automatically adjust the blueprint for the chip. It reduces parts of the process from days to hours.

"Practically all complicated chips have bugs and finding all bugs is intractable," said Igor Markov, associate professor of computer science and electrical engineering and another of FogClear's developers. "It's a paradox. Today, manufacturers are producing chips that must work for almost all applications, from e-mail to chess, but they cannot be validated for every possible condition. It's physically impossible."

In the current system, a chip design is first validated in simulations. Then a draft is cast in silicon, and this first prototype undergoes additional verification with more realistic applications. If a bug is detected at this stage, an engineer must narrow down the cause of the problem and then craft a fix that does not disrupt the delicate balance of all other components of the system. This can take several days. Engineers then produce new prototypes incorporating all the fixes. This process repeats until they arrive at a prototype that is free of bugs. For modern chips, the process of making sure a chip is free of bugs takes as much time as production.

"Bugs found post-silicon are often very difficult to diagnose and repair because it is difficult to monitor and control the signals that are buried inside a silicon die, or chip. Up until now engineers have handled post-silicon debugging more as an art than a science," said Kai-Hui Chang, a recent doctoral graduate who will present a paper on FogClear at the upcoming International Conference on Computer-Aided Design.

FogClear automates this debugging process. The computer-aided design tool can catch subtle errors that several months of simulations would still miss. Some bugs might take days or weeks before causing any miscomputation, and they might only do so under very rare circumstances, such as operating at high temperature. The new application searches for and finds the simplest way to fix a bug, the one that has the least impact on the working parts of the chip. The solution usually requires reconnecting certain wires, and does not affect transistors.

Chang, who received his doctorate in electrical engineering and computer science from U-M in August, will present Nov. 6 at the International Conference on Computer-Aided Design in San Jose, California. The paper is titled "Automating Post-Silicon Debugging and Repair." Markov and Bertacco are co-authors with Chang.

Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. Michigan Engineering boasts one of the largest engineering research budgets of any public university, at more than $130 million annually. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The College plays a leading role in the Michigan Memorial Phoenix Energy Institute and the Graham Environmental Sustainability Institute. Within the College, there is a special emphasis on research in three emerging areas: nanotechnology and integrated microsystems; cellular and molecular biotechnology; and information technology. Michigan Engineering is raising $300 million for capital projects and program support in these and other areas to continue fostering breakthrough scholarly advances, an unparalleled scope of student opportunities and contributions that improve the quality of life on an international scale.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>