Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New computer program automates chip debugging

07.11.2007
Fixing design bugs and wrong wire connections in computer chips after they've been fabricated in silicon is a tedious, trial-and-error process that often costs companies millions of dollars and months of time-to-market.

Engineering researchers at the University of Michigan say it doesn't have to be that way. They've developed a new technology to automate "post-silicon debugging."

"Today's silicon technology has reached such levels of small-scale fabrication and of sheer complexity that it is almost impossible to produce computer chips that work correctly under all scenarios," said Valeria Bertacco, assistant professor of electrical engineering and computer science and co-investigator in the new technology. "Almost all manufacturers must produce several prototypes of a given design before they attain a working chip."

FogClear, as the new method is called, uses puzzle-solving search algorithms to diagnose problems early on and automatically adjust the blueprint for the chip. It reduces parts of the process from days to hours.

"Practically all complicated chips have bugs and finding all bugs is intractable," said Igor Markov, associate professor of computer science and electrical engineering and another of FogClear's developers. "It's a paradox. Today, manufacturers are producing chips that must work for almost all applications, from e-mail to chess, but they cannot be validated for every possible condition. It's physically impossible."

In the current system, a chip design is first validated in simulations. Then a draft is cast in silicon, and this first prototype undergoes additional verification with more realistic applications. If a bug is detected at this stage, an engineer must narrow down the cause of the problem and then craft a fix that does not disrupt the delicate balance of all other components of the system. This can take several days. Engineers then produce new prototypes incorporating all the fixes. This process repeats until they arrive at a prototype that is free of bugs. For modern chips, the process of making sure a chip is free of bugs takes as much time as production.

"Bugs found post-silicon are often very difficult to diagnose and repair because it is difficult to monitor and control the signals that are buried inside a silicon die, or chip. Up until now engineers have handled post-silicon debugging more as an art than a science," said Kai-Hui Chang, a recent doctoral graduate who will present a paper on FogClear at the upcoming International Conference on Computer-Aided Design.

FogClear automates this debugging process. The computer-aided design tool can catch subtle errors that several months of simulations would still miss. Some bugs might take days or weeks before causing any miscomputation, and they might only do so under very rare circumstances, such as operating at high temperature. The new application searches for and finds the simplest way to fix a bug, the one that has the least impact on the working parts of the chip. The solution usually requires reconnecting certain wires, and does not affect transistors.

Chang, who received his doctorate in electrical engineering and computer science from U-M in August, will present Nov. 6 at the International Conference on Computer-Aided Design in San Jose, California. The paper is titled "Automating Post-Silicon Debugging and Repair." Markov and Bertacco are co-authors with Chang.

Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. Michigan Engineering boasts one of the largest engineering research budgets of any public university, at more than $130 million annually. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The College plays a leading role in the Michigan Memorial Phoenix Energy Institute and the Graham Environmental Sustainability Institute. Within the College, there is a special emphasis on research in three emerging areas: nanotechnology and integrated microsystems; cellular and molecular biotechnology; and information technology. Michigan Engineering is raising $300 million for capital projects and program support in these and other areas to continue fostering breakthrough scholarly advances, an unparalleled scope of student opportunities and contributions that improve the quality of life on an international scale.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

More articles from Information Technology:

nachricht World first: 'Storing lightning inside thunder'
18.09.2017 | University of Sydney

nachricht New software turns mobile-phone accessory into breathing monitor
14.09.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>