Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New computer program automates chip debugging

07.11.2007
Fixing design bugs and wrong wire connections in computer chips after they've been fabricated in silicon is a tedious, trial-and-error process that often costs companies millions of dollars and months of time-to-market.

Engineering researchers at the University of Michigan say it doesn't have to be that way. They've developed a new technology to automate "post-silicon debugging."

"Today's silicon technology has reached such levels of small-scale fabrication and of sheer complexity that it is almost impossible to produce computer chips that work correctly under all scenarios," said Valeria Bertacco, assistant professor of electrical engineering and computer science and co-investigator in the new technology. "Almost all manufacturers must produce several prototypes of a given design before they attain a working chip."

FogClear, as the new method is called, uses puzzle-solving search algorithms to diagnose problems early on and automatically adjust the blueprint for the chip. It reduces parts of the process from days to hours.

"Practically all complicated chips have bugs and finding all bugs is intractable," said Igor Markov, associate professor of computer science and electrical engineering and another of FogClear's developers. "It's a paradox. Today, manufacturers are producing chips that must work for almost all applications, from e-mail to chess, but they cannot be validated for every possible condition. It's physically impossible."

In the current system, a chip design is first validated in simulations. Then a draft is cast in silicon, and this first prototype undergoes additional verification with more realistic applications. If a bug is detected at this stage, an engineer must narrow down the cause of the problem and then craft a fix that does not disrupt the delicate balance of all other components of the system. This can take several days. Engineers then produce new prototypes incorporating all the fixes. This process repeats until they arrive at a prototype that is free of bugs. For modern chips, the process of making sure a chip is free of bugs takes as much time as production.

"Bugs found post-silicon are often very difficult to diagnose and repair because it is difficult to monitor and control the signals that are buried inside a silicon die, or chip. Up until now engineers have handled post-silicon debugging more as an art than a science," said Kai-Hui Chang, a recent doctoral graduate who will present a paper on FogClear at the upcoming International Conference on Computer-Aided Design.

FogClear automates this debugging process. The computer-aided design tool can catch subtle errors that several months of simulations would still miss. Some bugs might take days or weeks before causing any miscomputation, and they might only do so under very rare circumstances, such as operating at high temperature. The new application searches for and finds the simplest way to fix a bug, the one that has the least impact on the working parts of the chip. The solution usually requires reconnecting certain wires, and does not affect transistors.

Chang, who received his doctorate in electrical engineering and computer science from U-M in August, will present Nov. 6 at the International Conference on Computer-Aided Design in San Jose, California. The paper is titled "Automating Post-Silicon Debugging and Repair." Markov and Bertacco are co-authors with Chang.

Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. Michigan Engineering boasts one of the largest engineering research budgets of any public university, at more than $130 million annually. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The College plays a leading role in the Michigan Memorial Phoenix Energy Institute and the Graham Environmental Sustainability Institute. Within the College, there is a special emphasis on research in three emerging areas: nanotechnology and integrated microsystems; cellular and molecular biotechnology; and information technology. Michigan Engineering is raising $300 million for capital projects and program support in these and other areas to continue fostering breakthrough scholarly advances, an unparalleled scope of student opportunities and contributions that improve the quality of life on an international scale.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

More articles from Information Technology:

nachricht Researchers illuminate the path to a new era of microelectronics
23.04.2018 | Boston University College of Engineering

nachricht Researchers achieve HD video streaming at 10,000 times lower power
20.04.2018 | University of Washington

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>