Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New computer program automates chip debugging

07.11.2007
Fixing design bugs and wrong wire connections in computer chips after they've been fabricated in silicon is a tedious, trial-and-error process that often costs companies millions of dollars and months of time-to-market.

Engineering researchers at the University of Michigan say it doesn't have to be that way. They've developed a new technology to automate "post-silicon debugging."

"Today's silicon technology has reached such levels of small-scale fabrication and of sheer complexity that it is almost impossible to produce computer chips that work correctly under all scenarios," said Valeria Bertacco, assistant professor of electrical engineering and computer science and co-investigator in the new technology. "Almost all manufacturers must produce several prototypes of a given design before they attain a working chip."

FogClear, as the new method is called, uses puzzle-solving search algorithms to diagnose problems early on and automatically adjust the blueprint for the chip. It reduces parts of the process from days to hours.

"Practically all complicated chips have bugs and finding all bugs is intractable," said Igor Markov, associate professor of computer science and electrical engineering and another of FogClear's developers. "It's a paradox. Today, manufacturers are producing chips that must work for almost all applications, from e-mail to chess, but they cannot be validated for every possible condition. It's physically impossible."

In the current system, a chip design is first validated in simulations. Then a draft is cast in silicon, and this first prototype undergoes additional verification with more realistic applications. If a bug is detected at this stage, an engineer must narrow down the cause of the problem and then craft a fix that does not disrupt the delicate balance of all other components of the system. This can take several days. Engineers then produce new prototypes incorporating all the fixes. This process repeats until they arrive at a prototype that is free of bugs. For modern chips, the process of making sure a chip is free of bugs takes as much time as production.

"Bugs found post-silicon are often very difficult to diagnose and repair because it is difficult to monitor and control the signals that are buried inside a silicon die, or chip. Up until now engineers have handled post-silicon debugging more as an art than a science," said Kai-Hui Chang, a recent doctoral graduate who will present a paper on FogClear at the upcoming International Conference on Computer-Aided Design.

FogClear automates this debugging process. The computer-aided design tool can catch subtle errors that several months of simulations would still miss. Some bugs might take days or weeks before causing any miscomputation, and they might only do so under very rare circumstances, such as operating at high temperature. The new application searches for and finds the simplest way to fix a bug, the one that has the least impact on the working parts of the chip. The solution usually requires reconnecting certain wires, and does not affect transistors.

Chang, who received his doctorate in electrical engineering and computer science from U-M in August, will present Nov. 6 at the International Conference on Computer-Aided Design in San Jose, California. The paper is titled "Automating Post-Silicon Debugging and Repair." Markov and Bertacco are co-authors with Chang.

Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. Michigan Engineering boasts one of the largest engineering research budgets of any public university, at more than $130 million annually. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The College plays a leading role in the Michigan Memorial Phoenix Energy Institute and the Graham Environmental Sustainability Institute. Within the College, there is a special emphasis on research in three emerging areas: nanotechnology and integrated microsystems; cellular and molecular biotechnology; and information technology. Michigan Engineering is raising $300 million for capital projects and program support in these and other areas to continue fostering breakthrough scholarly advances, an unparalleled scope of student opportunities and contributions that improve the quality of life on an international scale.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>