Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vacation photos create 3D models of world landmarks

06.11.2007
More than 10 million members of the photo-sharing Web site Flickr snap pictures of their surroundings and then post those photos on the Internet. One group at the University of Washington is doing the reverse--downloading thousands of photos from Flickr and using them to recreate the original scenes.

A presentation in October at the International Conference on Computer Vision showed how photos from online sites such as Flickr can be used to create a virtual 3D model of landmarks, including Notre Dame Cathedral in Paris and the Statue of Liberty in New York City.

"The big breakthrough here is being able to compute very accurate 3D models from people's vacation photos," said co-author Steve Seitz, a UW associate professor of computer science and engineering. "The long-term vision is to be able to reconstruct the detailed geometry of all the structures on the surface of the Earth. Many people are working toward that goal, but by using online collections this work brings in a whole new source of imagery and level of detail."

Online photo-sharing Web sites such as Flickr and Google are popular because they offer a free, easy way to share photos. Flickr now holds more than 1 billion photos; a search for "Notre Dame Paris" finds more than 80,000 files. The study authors, experts in computer vision, believe this is the world's most diverse, and largely untapped, source of digital imagery.

But the freely available photos do present a challenge: these are holiday snapshots and personal photos, not laboratory-quality research images. While some may be postcard-perfect representations of a setting, others may be dark, blurry or have people covering up most of the scene.

To make the 3D digital model, the researchers first download photos of a landmark. For instance, they might download the roughly 60,000 pictures on Flickr that are tagged with the words "Statue of Liberty." The computer finds photos that it will be able to use in the reconstruction and discards pictures that are of low quality or have obstructions. Photo Tourism, a tool developed at the UW, then calculates where each person was standing when he or she took the photo. By comparing two photos of the same object that were taken from slightly different perspectives, the software applies principles of computer vision to figure out the distance to each point.

"The general principle is very similar to how our eyes work," said lead author Michael Goesele, a former postdoctoral researcher at the UW who is now a professor at Technische Universität Darmstadt in Germany. "You get multiple views from different points of a scene, and then you find the same point in different views and infer from that the depth of the object."

In tests, a computer took less than two hours to make a 3D reconstruction of St. Peter's Basilica in Rome, using 151 photos taken by 50 different photographers. A reconstruction of Notre Dame Cathedral used 206 images taken by 92 people. All the calculations and image sorting were performed automatically.

"We don't quite get the accuracy of a laser scanner, but we're in the ballpark," Seitz said. The recreations of Notre Dame show individual figures carved into the stone facade. A model of The Duomo in Pisa, Italy, a building about 160 feet tall, is accurate to within a few inches. The resolution of the 3D model mostly depends on the resolution of the original photos.

Creating 3D reconstructions of individual buildings is a first step in a long-term effort to recreate an entire city using online photographs.

"We've downloaded about 1 million photographs of Rome from Flickr," Seitz said. "We want to see how much of the city we can reconstruct--including exteriors, interiors and artifacts." The group hopes to make significant progress on the Rome project over the next couple of years, he said.

Other co-authors on the recent paper were Noah Snavely, a UW doctoral student in computer science and engineering; Brian Curless, a UW associate professor of computer science and engineering; and Hugues Hoppe, a researcher at Microsoft Research in Redmond, Wash. The research was funded through grants from the Alexander von Humboldt Foundation, the National Science Foundation, Microsoft Research and Adobe Systems Inc.

Hannah Hickey | EurekAlert!
Further information:
http://www.washington.edu

More articles from Information Technology:

nachricht Safe glide at total engine failure with ELA-inside
27.02.2017 | FernUniversität in Hagen

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>