Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to shrink the mobile phones even more?

25.04.2002


Even a conventional mobile phone user demands more functions and better performance of his mobile phone in the smallest possible space. The mobile phone should also be easy to use, reliable and inexpensive. In order to meet these demands, more data and functions than before must be packed into the circuit boards of mobile phones in the future.



The researchers at the Helsinki University of Technology have met this challenge by developing a new type of production method for electronics, a so-called IMB (Integrated Module Board) technology. Due to this technology, the performance of an electronics product is improved, more functions can be added to a smaller space than before and the reliability of the mobile phone is improved further.

"When we started to develop miniaturised electronics products, we wanted to get rid of the casings of the microchips to be packed onto the circuit board, because they took up too much space. The size of conventional microchip casings may be ten times as big as the actual microchip," Professor Jorma Kivilahti, the director of the Laboratory of Electronics Production Technology of the Helsinki University of Technology, explains.


"In the new IMB technology the components are integrated into the circuit board. A module manufactured in this manner is smaller and its electronic properties are better than those of the present component boards. The IMB module is fabricated by using photo definable polymers and fully additive electroless plating processes," Professor Kivilahti states.

"Electrical contacts are made of copper metal in connection with the manufacture of the module`s circuit wiring. Thus no soldering is used in the contacting of components. The present assembly techniques for electronics components are based on soldering."

This new technology will perhaps be available to the conventional mobile phone user in four or five years` time. The Helsinki University of Technology has transferred the rights of the technology developed by it to Aspocomp Oy and Elcoteq Networks Plc., who participated in the project. The task of these companies is to develop and productify production techniques. Nokia has also participated in the development of the new technology.

The IMB technology has been developed as part of the EXT technology programme financed by Tekes.

Mira Banerjee-Rantala | alphagalileo

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>