Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An inverse way for engineering

01.11.2007
In general, thinking in engineering is carried out conceptually, the concepts being processed in the computer virtually and, in the end, the object or the part is obtained.

In the case of inverse engineering, however, the path to be followed is exactly the reverse: the object or the part that physically exists ends up transformed into something virtual. This is exactly what they do in the Product Design Laboratory (PDL) at the Higher School of Engineering in Bilbao.

More than one could be tempted to think that inverse engineering is merely copying. Nothing further from the truth. Inverse engineering can be employed when there are no digital models or, even when they exist, there is a wish to enhance them. A fact to be considered, moreover, is that 80 % of engineering parts are only found in CAD format (one that is only useable with a computer), as they are quite out-dated.

We can also imagine a fire breaking out in a company and all the plans going up in smoke. All the machinery, parts and tools of the company have to be recovered no matter what. In these cases, inverse engineering turns out to be highly useful. How is the process carried out? By scanning the part.

State-of-the-art scanner

At the University of the Basque Country (UPV-EHU) laboratory there is scanner which is the latest thing in advanced technology. It is a mobile scanner, i.e. one that is able to scan any type of part from any angle, given that the scanner is moveable by hand. Moreover, the size of the objects to be scanned is not a problem, as these larger items can be scanned in sections. The scanner only has one limitation: the scanner must respect the overall shape. To this end, certain references are added to the part for digitalisation, in order that a system of references for the object is established. This scanner uses laser technology for the surface digitalisation of the object. While the laser rays move over the surface of the object, the scanner gathers and interprets the co-ordinates of the points on the part. It is capable of reading 18,000 points per second. Thus, in a question of seconds, the complete reading of the surface of objects can be undertaken. The set of points gathered during a scan is visualised on a computer screen.

The scanner uses a software programme for processing the points gathered and completing the set of points. Using this software the precision of the sets of points and certain other characteristics may be modified. Likewise, distortions or unnecessary points that the overall set of original points might have can be eliminated.

To edit the overall set of points obtained, Geomagic software is employed. This programme corrects holes or slight imperfections that the set might have. It also helps to modify or enhance the model: correcting imperfections that the original object might have and even adding certain elements, etc.

A ‘3D’ photocopier

Once the model is completed it is exported in CAD format to a rapid prototype machine. This machine makes plastic prototypes, obtaining the part layer by layer. Two types of material are used for this: one is used solely in the construction of the model, given that this material is subsequently dissolved. But thanks to this material, geometrically complex parts can be built, parts that conventional methods are unable to construct. In the last analysis, the work undertaken is similar to that of a printer: it stores fine layers of plastic on a base instead of placing ink on paper. The base is a previously obtained CAD archive. This will be the archive printed in three dimensions, before obtaining the prototype.

This process can be employed to design a wide range of products in many different fields: a number of surfboards from the surf Pukas company, golf clubs by Makser, and so on. Besides these, the UPV-EHU researchers today have a number of projects for the reconstruction protheses for dental and mandibular pieces. Inverse engineering undoubtedly has multiple applications in fields as diverse as medicine, fine art, archaeology and, of course, engineering.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1500&hizk=I

More articles from Information Technology:

nachricht Safe glide at total engine failure with ELA-inside
27.02.2017 | FernUniversität in Hagen

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>