Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Science and Galileo - working together

17.10.2007
Galileo is a promising tool for the scientific community, even though it is mainly intended for a set of practical services such as guiding cars, supporting safe aircraft landings or helping blind people to find their way.

This was clearly demonstrated during the first colloquium on scientific and fundamental aspects of the Galileo programme that took place at the 'Cité de l'Espace' in Toulouse from 1 until 4 October. The colloquium was organised by the Air and Space Academy, the Bureau des Longitudes, the Académie de Marine and ESA.

Indeed, the main objective of this world premiere was reached beyond expectations: enhancing the scientific use of Galileo and contributing to the science-based development of Global Navigation Satellite Systems (GNSS).

Around 200 scientists, coming from 25 countries world wide - with 19 being European, gathered and showed their interest in using GNSS systems and in particular Galileo's accuracy and integrity to improve their research in a wide scope that spans Earth sciences (for example: geodesy, meteorology, geophysics), quantum metrology (for example: atomic clocks, inter-satellite links, the Galileo timing system) and relativity (for example: spacetime symmetries, relativistic reference frames, astronomy and GNSS).

At the same time, the scientist's expertise can be of great help in improving the Galileo system itself. This is a 'win-win' situation, since a more precise tool can give more accurate data and therefore improve the measurements needed by the scientists for their research.

The scientists need to have access to GNSS data and ESA will facilitate further access to EGNOS and GIOVE-A data, which are already available to some extent. Dedicated solutions will be found for the scientists, with restrictions only being sometimes applied to commercial or PRS service data. Access to registered, stored data - which are the types most wanted by the scientific community - will be easily granted.

With this conference ESA was also expecting recommendations to improve the system itself and several were expressed so as to ensure the best environment for the scientific exploitation of Galileo. Of course, the requirements are now frozen for the first generation system but within the GNSS evolution programme, supported by ESA member states for technology accompaniment and the new Galileo generation, there is time to implement these particular needs - this is totally open in this programme envelope and new ideas are welcome.

The colloquium also led to reflection on the way the scientific community can organise itself for the use of Galileo. The event complements the already established effort, carried out by ESA, to contact scientific institutes in the fields of timekeeping, frequency standards and geodesy. Following this conference, the Galileo scientific community also includes the domains of quantum metrology and relativistic mechanics.

Although important progress was made, the debate still remain open on how scientists wish to express their specific needs to make the best use of Galileo. This will lead, in the medium and long term, to a privilege working relationship between scientific teams and the project teams responsible for building the next generation of European GNSS.

The colloquium was a great and unique opportunity for the Galileo partners to discover the numerous uses of satellite navigation, in the fields of Earth sciences, quantum metrology and relativistic mechanics, and to identify how scientific requirements can contribute to making the most of the present systems and to define their possible future evolution.

The use of quantum entanglement in the overall GNSS constellation, for example for clock synchronization, and the development of fully relativistic reference frames implemented through the GNSS constellation itself are of particular interest.

Dominique Detain | alfa
Further information:
http://www.esa.int/esaNA/SEMG4LAMS7F_index_0.html

More articles from Information Technology:

nachricht Fingerprints of quantum entanglement
16.02.2018 | University of Vienna

nachricht Simple in the Cloud: The digitalization of brownfield systems made easy
07.02.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>