Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer simulator allows visually impaired to drive

16.10.2007
A team of researchers from the University of Granada [http://www.ugr.es], in collaboration with the University of Murcia, has developed a visual aid device which significantly improves the vision of sight impaired patients; especially those suffering from pathologies with a slow progression that can eventually lead to blindness (such as Macular Degeneration, cataracts, etc.).

This platform, called SERBA (in Spanish, Reconfigurable Electric-optical System for Low Vision), is the first visual aid unit which is very useful in all circumstances and for all tasks, independently of the degree of impairment of the patient. Up to now, in the majority of cases, people with impaired vision had to acquire various different devices to meet all their needs.

The main contribution of this project – undertaken by Mª Dolores Peláez Coca and led by professors Fernando Vargas Martín and Eduardo Ros Vidal, all from the University of Granada – is the implementation of a new optoelectronic platform (based on a reconfigurable device known as FPGA) which is easily reprogrammed so that it can be used in different circumstances. This device will help patients, among other things, to improve their vision when driving.

This platform, as the creator of the research explains, is based on the design of a real-time video processing system able to store several image processing algorithms. “Thanks to the use of a FPGA it is a very flexible device which can be adapted to the user’s needs and to the evolution of their disease”. Eight patients suffering from Retinitis Pigmentosa (a visual impairment that reduces the field of vision) took part in the device’s assessment, as well as six others with different pathologies that generate a loss of sharpness of vision.

Updating through the Internet

The program is stored in the internal memory of the prototype board and the selection of the dump algorithm in the FPGA is carried out automatically. In this way, the images are shown in a transparent viewfinder, similar to those used in the army. With this system, there is no need to purchase a new platform so as to adapt it to the changes that are produced in the disease’s development; it is enough simply to update the programmes recorded in the device’s memory. This update can be carried out through the Internet, so the support and travelling expenses can be reduced considerably.

So as to prove the viability of the project, researchers from the University of Granada have developed three different image processing computer programmes: edge enhancement, three different kinds of digital zoom lens and the implementation of an augmented view scheme system.

The main advantage of SERBA is that it is easily reconfigured and that it also offers, in researchers’ own words, a “technological convergence”, as it includes light low-cost cameras, real time image processing and transparent portable viewfinders.

A driving video game

This visual aid system designed by scientists from the University of Granada [http://www.ugr.es] and the University of Murcia has contributed to the creation of bioptical telescopes, anamorphic systems and inverted telescopes that magnify the patient’s visibility as it implements zoom lens effects, edge enhancement and edge multiplexing to expand the field of vision. Moreover, a driving video game (with some enlargements in some areas of the image) has been developed to simulate the visual aids previously mentioned. The selection of the area to magnify is supplied by a Head Tracker that the subject carries in a cap.

Several companies have already shown their interest in commercialising this system created by the University of Granada, as SERBA is improving the sharpness of vision and contrast sensitivity, apart from offering an effective field of vision for very restricted visual fields and facilitating the subject’s mobility.

Antonio Marín Ruiz | alfa
Further information:
http://prensa.ugr.es/prensa/research/index.php

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>