Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer simulator allows visually impaired to drive

16.10.2007
A team of researchers from the University of Granada [http://www.ugr.es], in collaboration with the University of Murcia, has developed a visual aid device which significantly improves the vision of sight impaired patients; especially those suffering from pathologies with a slow progression that can eventually lead to blindness (such as Macular Degeneration, cataracts, etc.).

This platform, called SERBA (in Spanish, Reconfigurable Electric-optical System for Low Vision), is the first visual aid unit which is very useful in all circumstances and for all tasks, independently of the degree of impairment of the patient. Up to now, in the majority of cases, people with impaired vision had to acquire various different devices to meet all their needs.

The main contribution of this project – undertaken by Mª Dolores Peláez Coca and led by professors Fernando Vargas Martín and Eduardo Ros Vidal, all from the University of Granada – is the implementation of a new optoelectronic platform (based on a reconfigurable device known as FPGA) which is easily reprogrammed so that it can be used in different circumstances. This device will help patients, among other things, to improve their vision when driving.

This platform, as the creator of the research explains, is based on the design of a real-time video processing system able to store several image processing algorithms. “Thanks to the use of a FPGA it is a very flexible device which can be adapted to the user’s needs and to the evolution of their disease”. Eight patients suffering from Retinitis Pigmentosa (a visual impairment that reduces the field of vision) took part in the device’s assessment, as well as six others with different pathologies that generate a loss of sharpness of vision.

Updating through the Internet

The program is stored in the internal memory of the prototype board and the selection of the dump algorithm in the FPGA is carried out automatically. In this way, the images are shown in a transparent viewfinder, similar to those used in the army. With this system, there is no need to purchase a new platform so as to adapt it to the changes that are produced in the disease’s development; it is enough simply to update the programmes recorded in the device’s memory. This update can be carried out through the Internet, so the support and travelling expenses can be reduced considerably.

So as to prove the viability of the project, researchers from the University of Granada have developed three different image processing computer programmes: edge enhancement, three different kinds of digital zoom lens and the implementation of an augmented view scheme system.

The main advantage of SERBA is that it is easily reconfigured and that it also offers, in researchers’ own words, a “technological convergence”, as it includes light low-cost cameras, real time image processing and transparent portable viewfinders.

A driving video game

This visual aid system designed by scientists from the University of Granada [http://www.ugr.es] and the University of Murcia has contributed to the creation of bioptical telescopes, anamorphic systems and inverted telescopes that magnify the patient’s visibility as it implements zoom lens effects, edge enhancement and edge multiplexing to expand the field of vision. Moreover, a driving video game (with some enlargements in some areas of the image) has been developed to simulate the visual aids previously mentioned. The selection of the area to magnify is supplied by a Head Tracker that the subject carries in a cap.

Several companies have already shown their interest in commercialising this system created by the University of Granada, as SERBA is improving the sharpness of vision and contrast sensitivity, apart from offering an effective field of vision for very restricted visual fields and facilitating the subject’s mobility.

Antonio Marín Ruiz | alfa
Further information:
http://prensa.ugr.es/prensa/research/index.php

More articles from Information Technology:

nachricht Underwater acoustic localization of marine mammals and vehicles
23.11.2017 | IMDEA Networks Institute

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>