Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geneva is Counting on Quantum Cryptography as it Counts its Votes

12.10.2007
The Swiss national elections on October 21 will mark a world first for Geneva as the canton employs quantum cryptography to protect the dedicated line used for counting its ballots. This unbreakable data code was conceived by the University of Geneva and developed industrially by its spin-off, id Quantique.

With this project, the first real-world application of quantum cryptography, Geneva assumes a pioneering role. It is the initial phase of a wide-ranging plan for technological experimentation involving several partners from the Lake Geneva region. Eventually, this operation will lead to the creation of a pilot quantum communications network in Geneva similar to the nascent Internet network in the United States back in the 1970s.

On Thursday, October 11, the State of Geneva announced its intention to use quantum cryptography to secure the network linking its ballot data entry center to the government repository where the votes are stored. The main goal of this initiative, a world first, is to guarantee the integrity of the data as they are processed.

PROTECTING THE INFORMATION
For Robert Hensler, the Geneva State Chancellor, this operation aims to alleviate the concerns raised by the security and preservation of data integrity since online voting began in the canton in 2001. “We would like to provide optimal security conditions for the work of counting the ballots,” he explained. “In this context, the value added by quantum cryptography concerns not so much protection from outside attempts to interfere as the ability to verify that the data have not been corrupted in transit between entry and storage.”

Chancellor Hensler also stressed the fact that the use of cutting-edge technology such as quantum cryptography is directly related to the information’s importance to the State. “Information is the raw material of the State, which it uses to create added value. Whether in the context of a political decision, a police investigation or hospital care, the State is both a regulator of information exchange and a provider of information-based services.”

INTO THE REAL WORLD
Quantum cryptography was developed at the University of Geneva by Professor Nicolas Gisin and his team in the mid 1990s. In 2001, it gave rise to a spin-off company called id Quantique, which along with Geneva’s Information Technologies Center ensured that its deployment for the October 21 elections would become a reality. According to Professor Gisin, “protection of the federal elections is of historical importance in the sense that, after several years of development and experimentation, this will be the first use of a 1 GHz quantum encrypter, which is transparent for the user, and an ordinary fiber-optic line to send data endowed with relevance and purpose. So this occasion marks quantum technology’s real-world début.”
SWISSQUANTUM
Moreover, this first secured line is only the seed of a future network that its creators would like to develop along with other partners. In this respect, the federal elections mark the beginning of the SwissQuantum project. Managed by Professor Gisin, with support from the National Center of Competence in Quantum Photonics Research (NCCR QP), which is hosted by EPFL (Ecole polytechnique fédérale de Lausanne), SwissQuantum aims to set up a pilot communications network in Geneva, such as the first Internet network in the San Francisco area in the 1970s, to provide a platform for testing and validating the quantum technologies that will be called upon to play a starring role in protecting the communications networks of the future.

Grégoire Ribordy, the Director of id Quantique, says that “one of the medium-term goals is to provide the community with a platform on which the validity of quantum telecommunications can be tested and demonstrated.” The ITU Telecom World 2009 event to be held in Geneva on October 5-9, 2009, which will be attended by all of the telecommunications industry’s major players, will be the high point in this demonstration. “SwissQuantum will showcase Geneva and the Lake Geneva region as the unchallenged digital security capital of the world,” added Mr. Ribordy.

NEW QUANTUM HORIZONS
Finally, this project apparently has aspirations that go beyond the Lake Geneva region. Since it is now possible to protect any public fiber-optic network, why not consider expanding the system throughout the country and beyond? Some core industries of the economy would naturally lend themselves to the use of such technology: banks, insurance companies, high-tech businesses—in short, any company whose data are sufficiently sensitive that their inviolable protection needs to be ensured. In this regard, the SwissQuantum name ought to be the best guarantee for reassuring potential clients of the soundness of this scientific innovation and the expertise of its originators.

Pascal Vermot | alfa
Further information:
http://www.epfl.ch

More articles from Information Technology:

nachricht Researchers 3-D print electronics and cells directly on skin
26.04.2018 | University of Minnesota

nachricht Cheap 3-D printer can produce self-folding materials
25.04.2018 | Carnegie Mellon University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>