Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technology Identifies Warped Finger Prints at Warp Speed

02.10.2007
Researchers at the University of Warwick have devised a means of identifying partial, distorted, scratched, smudged, or otherwise warped fingerprints in just a few seconds.

Previous techniques have tried to identify a few key features on a finger print and laboriously match them against a database of templates. The University of Warwick researchers consider the entire detailed pattern of each print and transform the topological pattern into a standard co-ordinate system.

This allows the researchers to "unwarp" any finger print that has been distorted by smudging, uneven pressure, or other distortion and create a clear digital representation of the fingerprint that can then be mapped on to an "image space" of all other finger prints held on a database.

This unwarping is so effective that it also for the first time allows comparison of the position of individual sweat pores on finger print. This has not previously been possible as the hundreds of pores on an individual finger are so densely packed that the slightest distortion prevented analysts from using them to differentiate finger prints.

The "unwarping" of distorted, damaged or partial prints is not the only benefit of the new technology. The system created by the Warwick researchers is also able to give almost instantaneous results. Instead of laboriously comparing a print against each entry in a database any new print scanned by the system is unwarped and over laid onto a virtual "image space" that includes all the fingerprints available to the database. It does not matter whether it’s a thousand or a million fingerprints in the database the result comes back in seconds.

The University of Warwick researchers have set up a spin out company "Warwick Warp" to take the technology to market. This summer they took part in a 3 day exhibition at the London Science Museum to test their technology. Dr Li Wang, Chief Technology Officer at Warwick Warp said:

"We tested our system on nearly 500 visitors from all over the world and achieved 100% accuracy. Many of the visitors were children and children's fingerprints are particularly challenging as they generally contain finer features on a smaller area than adult fingers. Children often tend to twist their finger when placing the finger on the scanner, creating an elastic deformation which provides a great testing ground for our technology. "

Dr Li Wang also said: "Our technology also provides high speed and more importantly, our system’s accuracy and speed doesn't degrade when the size of database increases."

The researchers are exploring a number of commercial opportunities for their new technology including commercial access control systems, financial transaction authorization systems and possibly even ID cards passports or border control systems and are now seeking venture capital to assist such commercial developments.

Peter Dunn | alfa
Further information:
http://www2.warwick.ac.uk/newsandevents/pressreleases/new_technology_identifies/

More articles from Information Technology:

nachricht Cheap 3-D printer can produce self-folding materials
25.04.2018 | Carnegie Mellon University

nachricht Quantum Technology for Advanced Imaging – QUILT
24.04.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>