Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technology Identifies Warped Finger Prints at Warp Speed

02.10.2007
Researchers at the University of Warwick have devised a means of identifying partial, distorted, scratched, smudged, or otherwise warped fingerprints in just a few seconds.

Previous techniques have tried to identify a few key features on a finger print and laboriously match them against a database of templates. The University of Warwick researchers consider the entire detailed pattern of each print and transform the topological pattern into a standard co-ordinate system.

This allows the researchers to "unwarp" any finger print that has been distorted by smudging, uneven pressure, or other distortion and create a clear digital representation of the fingerprint that can then be mapped on to an "image space" of all other finger prints held on a database.

This unwarping is so effective that it also for the first time allows comparison of the position of individual sweat pores on finger print. This has not previously been possible as the hundreds of pores on an individual finger are so densely packed that the slightest distortion prevented analysts from using them to differentiate finger prints.

The "unwarping" of distorted, damaged or partial prints is not the only benefit of the new technology. The system created by the Warwick researchers is also able to give almost instantaneous results. Instead of laboriously comparing a print against each entry in a database any new print scanned by the system is unwarped and over laid onto a virtual "image space" that includes all the fingerprints available to the database. It does not matter whether it’s a thousand or a million fingerprints in the database the result comes back in seconds.

The University of Warwick researchers have set up a spin out company "Warwick Warp" to take the technology to market. This summer they took part in a 3 day exhibition at the London Science Museum to test their technology. Dr Li Wang, Chief Technology Officer at Warwick Warp said:

"We tested our system on nearly 500 visitors from all over the world and achieved 100% accuracy. Many of the visitors were children and children's fingerprints are particularly challenging as they generally contain finer features on a smaller area than adult fingers. Children often tend to twist their finger when placing the finger on the scanner, creating an elastic deformation which provides a great testing ground for our technology. "

Dr Li Wang also said: "Our technology also provides high speed and more importantly, our system’s accuracy and speed doesn't degrade when the size of database increases."

The researchers are exploring a number of commercial opportunities for their new technology including commercial access control systems, financial transaction authorization systems and possibly even ID cards passports or border control systems and are now seeking venture capital to assist such commercial developments.

Peter Dunn | alfa
Further information:
http://www2.warwick.ac.uk/newsandevents/pressreleases/new_technology_identifies/

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>