Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Seeks to Enhance Quality and Security of Wireless Telemedicine

19.09.2007
Effort will integrate RFID into cardiac sensor networks, improving remote medical delivery

A team of researchers led by Fei Hu, assistant professor of computer engineering at Rochester Institute of Technology, is working to advance the integration of radio frequency identification technology, also known as RFID, into cardiac sensor networks, a new wireless technology for telemedicine delivery. The team will also work to enhance the security of the systems used in the process, thereby reducing the possibility of identity theft and cyber-terrorism. The effort is being supported by a $400,000 grant from the National Science Foundation’s Cyber Trust Program. Hu, the principal investigator, will collaborate with Yang Xiao, professor of computer science at the University of Alabama.

“Telemedicine technology can greatly increase the quality of medical care while also decreasing health care costs,” notes Hu. “Through this project we hope to increase the integration of RFID into existing cardiac sensor networks, ensure the overall security of the system and promote the implementation of the technology in nursing homes and adult care facilities across the country.”

“This research will advance an important technology development, while also enhancing RIT’s skills and capabilities in the area of computer engineering and design,” adds Andreas Savakis, chair of RIT’s Department of Computer Engineering.

The United States’ growing nursing home and long-term care populations are putting a severe strain on the national health care system, in part due to the costs of medical care and doctor visits to these facilities. Cardiac sensor networks use wireless sensors to remotely monitor a patient’s heart beating pattern and blood pressure and transfer this information to doctors and hospitals off site. According to Hu, they are seen as a major avenue for increasing the quality of diagnosis and reducing the need for medical supervision.

One of the major roadblocks in the further development of the system has been concern over the security of wireless networks used in telemedicine delivery. Hu and Xiao will research the use of anti-interference technology to reduce radio distortion of these networks and design and test new RFID security schemes that will decrease the chance of information being stolen. They will also look to assist the overall implementation and integration of RFID to further the development of this technology in telemedicine systems.
“There are well known security challenges associated with cardiac sensor networks and RFID,” Hu notes. “It is my hope this research will assist in better protecting these systems and allow greater numbers of doctors and patients to take advantage of the benefits of telemedicine.”

Hu and Xiao’s team will include a number of RIT students, both graduate and undergraduate, as well as researchers from the University of Alabama’s Department of Computer Science.

Will Dube | EurekAlert!
Further information:
http://www.rit.edu

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>