Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Seeks to Enhance Quality and Security of Wireless Telemedicine

19.09.2007
Effort will integrate RFID into cardiac sensor networks, improving remote medical delivery

A team of researchers led by Fei Hu, assistant professor of computer engineering at Rochester Institute of Technology, is working to advance the integration of radio frequency identification technology, also known as RFID, into cardiac sensor networks, a new wireless technology for telemedicine delivery. The team will also work to enhance the security of the systems used in the process, thereby reducing the possibility of identity theft and cyber-terrorism. The effort is being supported by a $400,000 grant from the National Science Foundation’s Cyber Trust Program. Hu, the principal investigator, will collaborate with Yang Xiao, professor of computer science at the University of Alabama.

“Telemedicine technology can greatly increase the quality of medical care while also decreasing health care costs,” notes Hu. “Through this project we hope to increase the integration of RFID into existing cardiac sensor networks, ensure the overall security of the system and promote the implementation of the technology in nursing homes and adult care facilities across the country.”

“This research will advance an important technology development, while also enhancing RIT’s skills and capabilities in the area of computer engineering and design,” adds Andreas Savakis, chair of RIT’s Department of Computer Engineering.

The United States’ growing nursing home and long-term care populations are putting a severe strain on the national health care system, in part due to the costs of medical care and doctor visits to these facilities. Cardiac sensor networks use wireless sensors to remotely monitor a patient’s heart beating pattern and blood pressure and transfer this information to doctors and hospitals off site. According to Hu, they are seen as a major avenue for increasing the quality of diagnosis and reducing the need for medical supervision.

One of the major roadblocks in the further development of the system has been concern over the security of wireless networks used in telemedicine delivery. Hu and Xiao will research the use of anti-interference technology to reduce radio distortion of these networks and design and test new RFID security schemes that will decrease the chance of information being stolen. They will also look to assist the overall implementation and integration of RFID to further the development of this technology in telemedicine systems.
“There are well known security challenges associated with cardiac sensor networks and RFID,” Hu notes. “It is my hope this research will assist in better protecting these systems and allow greater numbers of doctors and patients to take advantage of the benefits of telemedicine.”

Hu and Xiao’s team will include a number of RIT students, both graduate and undergraduate, as well as researchers from the University of Alabama’s Department of Computer Science.

Will Dube | EurekAlert!
Further information:
http://www.rit.edu

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>