Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smithsonian scientists help lead effort to 'barcode' world's species

18.09.2007
Smithsonian researchers are among the leaders in a worldwide effort to revolutionize the way scientists identify species in the laboratory and in the field with a technique called DNA barcoding. Similar to the barcode that identifies an item at the grocery store, a DNA barcode is used to identify and distinguish biological species.

This month, scientists are gathering in Taiwan for the Second International Barcode of Life Conference (Sept. 17-21). They will discuss potential applications for using DNA barcodes, including food safety, disease prevention and better environmental monitoring. There are now more than 280,000 DNA barcode records representing about 31,000 species.

“DNA barcoding is emerging as a global standard for identifying species in basic taxonomic research, biodiversity studies and in government regulation. The Smithsonian’s scientists are important leaders in the Barcode of Life Initiative, and the National Museum of Natural History is demonstrating the importance of museum collections,” said David Schindel, executive secretary of the Consortium for the Barcode of Life, based at the Smithsonian’s National Museum of Natural History.

Each of the world’s estimated 1.8 million species is genetically unique—its unique identity is carried in its DNA molecules. DNA barcoding rapidly sequences the DNA from a single, standardized gene on the DNA molecule. The technique can quickly identify species from larval forms or tissue samples that can sometimes be nearly impossible to identify through traditional methods.

Accuracy and speed are especially important, as much of world’s biodiversity is disappearing faster than scientists can tally species in rainforests and other threatened tropical ecosystems. Beyond tropical forests, DNA barcoding has practical applications for the public. Health and government officials are using DNA barcoding to help track disease vectors, monitor the environment and make the skies safer by reducing aircraft collisions with birds.

The Smithsonian has been involved in DNA barcoding since the technique was first proposed in 2003. The Smithsonian houses the Laboratories of Analytical Biology (LAB)—one of two North American “barcode factories” with the capacity to generate hundreds of thousands of barcodes per year.

The Smithsonian also plays a key role in coordinating the growing international research network and in making the technology available to scientists in other countries. Many of the countries where the need is greatest lack the scientific infrastructure for barcoding research.

“We need to take the biotechnology to the biodiversity,” said Lee Weigt, director of the LAB at the Smithsonian. The lab has developed inexpensive field kits for extracting DNA and Web-based training videos. “Whether you are working in a building with electricity, off the hood of your vehicle in the jungle or on a research boat, we have experience at all levels that we can pass on,” he added.

Smithsonian scientist Carla Dove and colleagues recently completed barcoding North American bird species, with support from the U.S. Federal Aviation Authority and the U.S. Air Force. Aircraft collisions with birds are hazardous; knowing which birds are most often struck and the timing, altitude and routes of their migrations could avert some of the thousands of annual collisions between birds and military and civilian aircraft. Scientists use barcoding to identify species from blood and tissue on the aircraft.

“DNA barcoding is the newest tool in the feather identification toolbox and allows us to obtain species level identifications in about 68 percent of the cases that we submit for DNA analysis,” Dove said. “That is a major breakthrough for this field of study and will benefit aviation safety on a global scale.”

The Mosquito Barcode Initiative is one of the largest projects under way. Mosquitoes are important vectors of disease, but even specialists can have trouble distinguishing disease-carrying species from harmless species, which may be identical in outward appearance. Better identifications will lead to more efficient control of vectors.

“DNA is a fantastic tool for sorting these things out,” said Richard Wilkerson, a research entomologist at the Walter Reed Army Institute of Research working at the LAB with Smithsonian scientists. There are 3,400 known species of mosquitoes, but Wilkerson suspects barcoding will reveal many more. “In one case in Australia there turned out to be 23 species going under one name. Only one or two are probably vectors,” he said.

The Smithsonian’s LAB also is working with the Environmental Protection Agency and the Maryland Department of Natural Resources to develop “better, faster, cheaper” ways of monitoring water quality in streams, Weigt said. Currently, water quality is assessed by identifying insect larvae living in the streams. But traditional methods are very time-intensive and subject to error. “It’s very difficult to pick up larvae of an insect and identify it all the way to species; but with DNA it’s easy,” Weigt said.

Michele Urie | EurekAlert!
Further information:
http://www.si.edu

More articles from Information Technology:

nachricht Japanese researchers develop ultrathin, highly elastic skin display
19.02.2018 | University of Tokyo

nachricht Why bees soared and slime flopped as inspirations for systems engineering
19.02.2018 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>