Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Smithsonian scientists help lead effort to 'barcode' world's species

Smithsonian researchers are among the leaders in a worldwide effort to revolutionize the way scientists identify species in the laboratory and in the field with a technique called DNA barcoding. Similar to the barcode that identifies an item at the grocery store, a DNA barcode is used to identify and distinguish biological species.

This month, scientists are gathering in Taiwan for the Second International Barcode of Life Conference (Sept. 17-21). They will discuss potential applications for using DNA barcodes, including food safety, disease prevention and better environmental monitoring. There are now more than 280,000 DNA barcode records representing about 31,000 species.

“DNA barcoding is emerging as a global standard for identifying species in basic taxonomic research, biodiversity studies and in government regulation. The Smithsonian’s scientists are important leaders in the Barcode of Life Initiative, and the National Museum of Natural History is demonstrating the importance of museum collections,” said David Schindel, executive secretary of the Consortium for the Barcode of Life, based at the Smithsonian’s National Museum of Natural History.

Each of the world’s estimated 1.8 million species is genetically unique—its unique identity is carried in its DNA molecules. DNA barcoding rapidly sequences the DNA from a single, standardized gene on the DNA molecule. The technique can quickly identify species from larval forms or tissue samples that can sometimes be nearly impossible to identify through traditional methods.

Accuracy and speed are especially important, as much of world’s biodiversity is disappearing faster than scientists can tally species in rainforests and other threatened tropical ecosystems. Beyond tropical forests, DNA barcoding has practical applications for the public. Health and government officials are using DNA barcoding to help track disease vectors, monitor the environment and make the skies safer by reducing aircraft collisions with birds.

The Smithsonian has been involved in DNA barcoding since the technique was first proposed in 2003. The Smithsonian houses the Laboratories of Analytical Biology (LAB)—one of two North American “barcode factories” with the capacity to generate hundreds of thousands of barcodes per year.

The Smithsonian also plays a key role in coordinating the growing international research network and in making the technology available to scientists in other countries. Many of the countries where the need is greatest lack the scientific infrastructure for barcoding research.

“We need to take the biotechnology to the biodiversity,” said Lee Weigt, director of the LAB at the Smithsonian. The lab has developed inexpensive field kits for extracting DNA and Web-based training videos. “Whether you are working in a building with electricity, off the hood of your vehicle in the jungle or on a research boat, we have experience at all levels that we can pass on,” he added.

Smithsonian scientist Carla Dove and colleagues recently completed barcoding North American bird species, with support from the U.S. Federal Aviation Authority and the U.S. Air Force. Aircraft collisions with birds are hazardous; knowing which birds are most often struck and the timing, altitude and routes of their migrations could avert some of the thousands of annual collisions between birds and military and civilian aircraft. Scientists use barcoding to identify species from blood and tissue on the aircraft.

“DNA barcoding is the newest tool in the feather identification toolbox and allows us to obtain species level identifications in about 68 percent of the cases that we submit for DNA analysis,” Dove said. “That is a major breakthrough for this field of study and will benefit aviation safety on a global scale.”

The Mosquito Barcode Initiative is one of the largest projects under way. Mosquitoes are important vectors of disease, but even specialists can have trouble distinguishing disease-carrying species from harmless species, which may be identical in outward appearance. Better identifications will lead to more efficient control of vectors.

“DNA is a fantastic tool for sorting these things out,” said Richard Wilkerson, a research entomologist at the Walter Reed Army Institute of Research working at the LAB with Smithsonian scientists. There are 3,400 known species of mosquitoes, but Wilkerson suspects barcoding will reveal many more. “In one case in Australia there turned out to be 23 species going under one name. Only one or two are probably vectors,” he said.

The Smithsonian’s LAB also is working with the Environmental Protection Agency and the Maryland Department of Natural Resources to develop “better, faster, cheaper” ways of monitoring water quality in streams, Weigt said. Currently, water quality is assessed by identifying insect larvae living in the streams. But traditional methods are very time-intensive and subject to error. “It’s very difficult to pick up larvae of an insect and identify it all the way to species; but with DNA it’s easy,” Weigt said.

Michele Urie | EurekAlert!
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>