Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computerised treatment of manuscripts

07.09.2007
Researchers at the UAB Computer Vision Centre working on the automatic recognition of manuscript documents have designed a new system that is more efficient and reliable than currently existing ones.

The BSM (acronym for "Blurred Shape Model") has been designed to work with ancient, damaged or difficult to read manuscripts, handwritten scores and architectural drawings. It represents at the same time an effective human machine interface in automatically reproducing documents while they are being written or drawn.

Researchers based their work on the biological process of the human mind and its ability to see and interpret all types of images (recognition of shapes, structures, dimensions, etc.) to create description and classification models of handwritten symbols. However, this computerised system differs from others since it can detect variations, elastic deformations and uneven distortions that can appear when manually reproducing any type of symbol (letters, signs, drawings, etc.). Another advantage is the possibility to work in real time, only a few seconds after the document has been introduced into the computer.

The BSM differs from other existing systems which follow the same process when deciphering different types of symbols, since a standard process makes it more difficult to recognise the symbols after they have been introduced. In contrast, the methodology developed by the Computer Vision Centre can be adapted to each of the areas it is applied to. To be able to analyse and recognise symbols, the system divides image regions into sub regions - with the help of a grid - and saves the information from each grid square, while registering even the smallest of differences (e.g. between p and b). Depending on the shape introduced, the system undergoes a process to distinguish the shape and also any possible deformations (the letter P for example would be registered as being rounder or having a shorter or longer stem, etc.). It then stores this information and classifies it automatically.

Researchers decided to test the efficiency of the system by experimenting with two application areas. They created a database of musical notes and a database of architectural symbols. The first was created from a collection of modern and ancient musical scores (from the 18th and 19th centuries) from the archives of the Barcelona Seminary, which included a total of 2,128 examples of three types of musical notes drawn by 24 different people. The second database included 2,762 examples of handwritten architectural symbols belonging to 14 different groups. Each group contained approximately 200 types of symbols drawn by 13 different people.

In order to compare the performance and reliability of the BSM, the same data was introduced into other similar systems. The BSM was capable of recognising musical notes with an exactness of over 98% and architectural symbols with an exactness of 90%.

Researchers at the Computer Vision Centre who developed the BSM were awarded the first prize in the third edition of the Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA) which took place last June.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>