Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The North’s new nervous system

07.09.2007
Scientists are working on an underwater wireless network to talk to each other. In a few years, the pilot scheme could be ready to monitor the Barents Sea.

Last year saw the launch of the cooperative project on “A New Nervous System for the Arctic”, with a budget of NOK 21 million. Kongsberg Maritime, Fugro Oceanor, Statoil, Western Geco, the Institute of Marine Research and NTNU/SINTEF want to monitor the ocean in the same way as the surface of the Earth and the atmosphere are being monitored today.

Environmental monitoring, biomass monitoring and greater certainty regarding petroleum pipelines and offshore installations are among the benefits envisioned.

Monitoring the entrance

Everyone involved realises that the Barents Sea is huge and that it would be impossible to cover it completely with a wireless network. However, the Institute of Marine Research has a vision of placing sensors and a monitoring system along the line of the continental slope to the north of Troms, for example, where the seabed makes a sudden jump from deep to shallow. If we manage to monitor the “entrance” to the Barents Sea, we have the prospect of obtaining unique data. Fish from the Vestfjord heading for their spawning grounds in the Barents Sea would have to cross this line, as would plankton drifting eastwards with the ocean current.

An innovative approach here would at least cut down the expensive cruises in which research vessels cross the ocean to collect samples of stocks.

Arctic network of sensor nodes

The idea is to deploy communication nodes to which core sensors can later be connected; e.g. small echo-sounders. The nodes could be moored to the seabed or could function as unattached “floaters” that drift with the current. A third possibility would be to install them on small underwater vehicles (ROVs), if something in particular is to be studied within a limited area.

“We can also imagine locating units on surface buoys to enable the network of sensors to communicate via satellite”, says SINTEF scientist Knut Grythe. “Fugro Oceanor, with its buoy expertise, is interested in setting up wireless communication with its products – with a view to international use.”

Communication in the Barents Sea can thus take place both through an underwater network for internal communication, and to the rest of the world via buoys floating on the surface. When subsea petroleum installations are to be monitored, we might also use existing communication cables between the network and the outside world.

Talking underwater

Only sound can be used to communicate under water, and Knut Grythe and his colleague Tor Arne Reinen are currently working on the problem of making sound travel efficiently from one point to another.

In an internal project they have established an acoustic link about two kilometres long in the fjord outside Trondheim, and have installed two microphones at one end and two loudspeakers at the other.

“This ‘multiple input/multiple output’ (MIMO) setup is relatively new as an underwater system, and we have little experience to fall back on”, says Grythe. “The system can help us to communicate more reliably and with a higher rate of information transfer than before. It will be rather like when people install a broadband router at home, but with two antennae instead of one.”

However, the scientists also have to deal with other challenges to communication. Sound tends to travel slowly under water. When a signal is transmitted, it is almost like having a radio receiver on Earth and a transmitter on the Moon. Another problem is that the route taken by the sound varies with temperature and salinity as the seasons change.

“We can think of sound dissipation under water as a fan of sound beams. Some of the beams are deflected down into the sea while others are deflected towards the surface. This makes our work even more complicated. We need to create ‘smart signals’ and robust receivers”, explains Tor Arne Reinen.

The scientists are borrowing methods and technology from mobile telephony among other areas, and the principles will be tested in the course of the coming year.

“If we can identify good solutions for our distance of two kilometres, we can then scale them up to real conditions”, says Reinen.

The fjord as a laboratory

On the NTNU side, Professor Jens Hovem has been a central person and visionary driver of the project. Together with Yngvar Olsen at NTNU’s Biological Station, and a core group of scientists, he has promoted the idea of the Trondheim Fjord as a broad, interdisciplinary research platform.

“A need has emerged for a marine laboratory in which different groups can work together. We have formed a work group that is drawing up a description of such a laboratory right now. It is necessary to bring together people from SINTEF and NTNU – and from different disciplines such as biology, ICT, archaeology and marine environmental science. Many people need to model things, and we can envisage a test-bed on which we can place equipment on a small scale in order to take our first shaky steps on home ground”, says Olsen.

Åse Dragland

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Information Technology:

nachricht Powerful IT security for the car of the future – research alliance develops new approaches
25.05.2018 | Universität Ulm

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

 
Latest News

International Workshop Sees Central Role for Solar in Transforming the World Energy Economy

28.05.2018 | Seminars Workshops

Cognitive Power Electronics 4.0 is gaining momentum

28.05.2018 | Trade Fair News

Organic light-emitting diodes become brighter and more durable

28.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>