Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The next generation of computers will be timeless

08.04.2002


Time is running out for the clocks that make our computers tick. Scientists have developed a new generation of hardware and software based on the simpler designs of the 1950s.



Asynchronous, or clock-free systems, promise extra speed, safety, security and miniaturisation. The new designs work well in the laboratory and are only awaiting the development of software tools so that they can be produced commercially, says Professor Alex Yakovlev and fellow researchers in the Department of Computing Science at Newcastle University, England.

This week (April 8-12) the Newcastle team will present two papers at the International Symposium on Advanced Research into Asynchronous Circuits and Systems, in Manchester, England (see web link). One paper explains the pioneering techniques the team has developed for synthesizing asynchronous systems, the other relates to measuring metastability — a problem which may sound the death knell of conventional computers.


Because computers of the 1950s were relatively simple, they could function without clocks. Since the advent of faster and more complex systems in the 1960s, all hardware design has been based on the principle of the clock — a microelectronic crystal which emits rapid pulses of electricity to synchronise the flow of data. In modern PCs, this is at the heart of the Pentium Processor.

But computer systems are now so complex that clocks are imposing limitations on performance. The electrical pulses, travelling at the speed of light, are not fast enough to keep accurate time as they visit tens of millions of transistors on a single chip.

The result is that errors begin to occur in data. The phenomenon is known as metastability, a fundamental and insoluble problem which is causing increasing difficulty for designers who have to balance the demand for speed and complexity of systems with the need for reliability.

‘In binary terms, incoming data has a metastable state in which it is neither true nor false,’ said Professor Yakovlev. ‘A resulting system failure would be inconvenient to a PC user and could result in a disaster in an industry where reliability is critical, such as aviation.’

Asynchronous systems rely on a protocol of data transmission and acknowledgement which is not regulated by time. This can happen locally within a computer or globally between computers. Before data is exchanged, there must first be a ‘handshake’, or agreement on the mutually acceptable protocol.

Computer clocks generate heat as well as high frequencies, since they consume large amounts of power. To abolish them would allow portable devices to run on less power, enabling further miniaturisation.
Hackers would also be troubled by asynchronous systems, since the irregular pattern of data transmission allows the information to be encrypted far more effectively than at present.

Professor Yakovlev believes that the clock-based system is nearing the end of its useful life, with designers facing increasing difficulties as systems become more complex.

‘One of the problems is that all graduates entering the industry are immediately taught to design systems with clocks. It will be difficult to persuade them to change their ways,’ he admits.

‘We have shown that asynchronous systems work but we need to develop simple tools for commercial design and testing purposes. In my opinion, this is the last piece of the jigsaw.’

One of the barriers is that designing asynchronous systems requires the use of a new computer language, called Petri Net. At Newcastle, scientists are developing a design system which overcomes this problem by automatically translating Petri Net into orthodox computer language as asynchronous circuit designs are mapped out.

Such innovations are making asynchronous technology a more attractive commercial proposition and there are signs that the world is now at the dawn of the transitional period. Scientists talk of an intermediate system developing, nicknamed GALS — Globally Asynchronous, Locally Synchronous.

It is no secret that electronics company Philips has produced an experimental pager built from asynchronous circuits and is developing other devices based on the same principle (see web links). It is also rumoured that a leading manufacturer is designing the next generation of computer processor with at least some asynchronous elements.

Just over a year ago, the New York Times reviewed the concept of asynchronous design in a business article and claimed that ‘most of the mainstream computer world is not convinced that a wholesale change of the way industry designs and manufacturers chips is practical’ (see web link). However, researchers have opened up new horizons over the past year and many experts believe that widespread introduction of this new technology is now only a matter of time.

Michael Warwicker | alphagalileo

More articles from Information Technology:

nachricht Snake-inspired robot uses kirigami to move
22.02.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Camera technology in vehicles: Low-latency image data compression
22.02.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>