Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling bandwidth in the clouds

30.08.2007
If half your company’s bandwidth is allocated to your mirror in New York, and it’s the middle of the night there, and your sites in London and Tokyo are slammed, that New York bandwidth is going to waste. UC San Diego computer scientists have designed, implemented, and evaluated a new bandwidth management system for cloud-based applications capable of solving this problem.

The UCSD algorithm enables distributed rate limiters to work together to enforce global bandwidth rate limits, and dynamically shift bandwidth allocations across multiple sites or networks, according to current network demand.

“With our system, an organization with mirrored Web sites or other services across the globe could dynamically shift its bandwidth allocations between sites based on demand. You can’t do that now, and this lack of control is a significant drawback to today’s cloud-based computing approaches,” said Barath Raghavan, the first author on a new paper describing the work, and a Ph.D. candidate in the Department of Computer Science and Engineering at UCSD’s Jacobs School of Engineering.

On August 30, this work will be presented in Kyoto, Japan at ACM SIGCOMM, one of the world’s most prestigious networking conferences. It earned the 2007 SIGCOMM best student paper award – the top prize at the conference.

Raghavan’s paper “Cloud Control with Distributed Rate Limiting,” is co-authored with Kashi Vishwanath, Sriram Ramabhadran – two fellow UCSD computer science Ph.D. students – Kenneth Yocum (a UCSD computer science researcher) and Alex C. Snoeren, a computer science professor from UCSD’s Jacobs School of Engineering.

The “flow proportional share” algorithm the UCSD computer scientists created enables the coordinated policing of a cloud-based service’s network traffic, and therefore, the cost associated with this traffic. The TCP-centric design is scalable to hundreds of nodes, runs with very low overhead, and is robust to both loss and communication delay, making it practical for deployment in nationwide service providers, the authors write. TCP (Transmission Control Protocol) is the Internet protocol that establishes a connection between two hosts and ensures that packets travel safely from sender to receiver; TCP is used for the vast majority of Internet traffic.

“Our primary insight is that we can use TCP itself to estimate bandwidth demand,” said Alex Snoeren, the senior author on the paper. “Relying on TCP, we can provide the fairness that you would see with one central rate limiter. From the perspective of the actual network flows that are going through it, we have made our distributed rate limiter look centralized. This is the main technical contribution of the paper,” said Snoeren.

Distributed rate limiting could be useful in a variety of ways:

* Cloud-based resource providers could control the use of network bandwidth, and associated costs, as if all the bandwidth were sourced from a single pipe.

* For content-distribution networks that currently provide replication services to third-party Web sites, distributed rate limiting could provide a powerful tool for managing access to client content.

* Internet testbeds such as Planetlab are often overrun with network demands from users. Distributed rate limiting could bring the bandwidth crisis under control and render such research tools much more effective.

Going with the (TCP) Flow

When you connect to a Web site, you open a TCP flow between your personal computing device and the Web site. As more people connect to the same site, the number of flows increases and the bandwidth gets split up fairly among the growing number of users. The flow proportional share algorithm from UCSD monitors the flows at each of the distributed sites and finds the largest flow at each site. Based on how fast packets are moving along the largest flow, the algorithm reverse engineers the network demand at each rate limiter.

A gossip protocol communicates these demand values among all the associated rate limiters. Next, the new algorithm ranks the rate limiters according to network traffic demands and splits the bandwidth accordingly.

“Our algorithm allows individual flows to compete dynamically for bandwidth not only with flows traversing the same limiter, but with flows traversing other limiters as well,” Raghavan explained.

The UCSD computer scientists performed extensive evaluations of their system, using Jain’s fairness index as a metric of inter-flow fairness. In a wide variety of Internet traffic patterns, the authors demonstrated that their approach to distributed limiting of the rate of bandwidth usage works as well as a single rate limiter would work, with very little overhead.

“As computing shifts to a cloud-based model, there is an opportunity to reconsider how network resources are allocated,” said Stefan Savage, a UCSD computer scientist not involved in the study.

Right now, Raghavan and co-author Kenneth Yocum are working on the code necessary to implement their flow proportional share algorithm within Planetlab, the Internet testbed that computer scientists use to test projects in a global environment.

Media contact:
Daniel B. Kane
UCSD Jacobs School of Engineering
858-534-3262 (office)
dbkane@ucsd.edu
Author contacts:
(note, the authors are in Kyoto, Japan during the week of August 27, but are available via email)
Barath Raghavan
barath AT cs DOT ucsd.edu
Alex C. Snoeren
Snoeren AT cs DOT ucsd.edu

Daniel Kane | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>