Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling bandwidth in the clouds

30.08.2007
If half your company’s bandwidth is allocated to your mirror in New York, and it’s the middle of the night there, and your sites in London and Tokyo are slammed, that New York bandwidth is going to waste. UC San Diego computer scientists have designed, implemented, and evaluated a new bandwidth management system for cloud-based applications capable of solving this problem.

The UCSD algorithm enables distributed rate limiters to work together to enforce global bandwidth rate limits, and dynamically shift bandwidth allocations across multiple sites or networks, according to current network demand.

“With our system, an organization with mirrored Web sites or other services across the globe could dynamically shift its bandwidth allocations between sites based on demand. You can’t do that now, and this lack of control is a significant drawback to today’s cloud-based computing approaches,” said Barath Raghavan, the first author on a new paper describing the work, and a Ph.D. candidate in the Department of Computer Science and Engineering at UCSD’s Jacobs School of Engineering.

On August 30, this work will be presented in Kyoto, Japan at ACM SIGCOMM, one of the world’s most prestigious networking conferences. It earned the 2007 SIGCOMM best student paper award – the top prize at the conference.

Raghavan’s paper “Cloud Control with Distributed Rate Limiting,” is co-authored with Kashi Vishwanath, Sriram Ramabhadran – two fellow UCSD computer science Ph.D. students – Kenneth Yocum (a UCSD computer science researcher) and Alex C. Snoeren, a computer science professor from UCSD’s Jacobs School of Engineering.

The “flow proportional share” algorithm the UCSD computer scientists created enables the coordinated policing of a cloud-based service’s network traffic, and therefore, the cost associated with this traffic. The TCP-centric design is scalable to hundreds of nodes, runs with very low overhead, and is robust to both loss and communication delay, making it practical for deployment in nationwide service providers, the authors write. TCP (Transmission Control Protocol) is the Internet protocol that establishes a connection between two hosts and ensures that packets travel safely from sender to receiver; TCP is used for the vast majority of Internet traffic.

“Our primary insight is that we can use TCP itself to estimate bandwidth demand,” said Alex Snoeren, the senior author on the paper. “Relying on TCP, we can provide the fairness that you would see with one central rate limiter. From the perspective of the actual network flows that are going through it, we have made our distributed rate limiter look centralized. This is the main technical contribution of the paper,” said Snoeren.

Distributed rate limiting could be useful in a variety of ways:

* Cloud-based resource providers could control the use of network bandwidth, and associated costs, as if all the bandwidth were sourced from a single pipe.

* For content-distribution networks that currently provide replication services to third-party Web sites, distributed rate limiting could provide a powerful tool for managing access to client content.

* Internet testbeds such as Planetlab are often overrun with network demands from users. Distributed rate limiting could bring the bandwidth crisis under control and render such research tools much more effective.

Going with the (TCP) Flow

When you connect to a Web site, you open a TCP flow between your personal computing device and the Web site. As more people connect to the same site, the number of flows increases and the bandwidth gets split up fairly among the growing number of users. The flow proportional share algorithm from UCSD monitors the flows at each of the distributed sites and finds the largest flow at each site. Based on how fast packets are moving along the largest flow, the algorithm reverse engineers the network demand at each rate limiter.

A gossip protocol communicates these demand values among all the associated rate limiters. Next, the new algorithm ranks the rate limiters according to network traffic demands and splits the bandwidth accordingly.

“Our algorithm allows individual flows to compete dynamically for bandwidth not only with flows traversing the same limiter, but with flows traversing other limiters as well,” Raghavan explained.

The UCSD computer scientists performed extensive evaluations of their system, using Jain’s fairness index as a metric of inter-flow fairness. In a wide variety of Internet traffic patterns, the authors demonstrated that their approach to distributed limiting of the rate of bandwidth usage works as well as a single rate limiter would work, with very little overhead.

“As computing shifts to a cloud-based model, there is an opportunity to reconsider how network resources are allocated,” said Stefan Savage, a UCSD computer scientist not involved in the study.

Right now, Raghavan and co-author Kenneth Yocum are working on the code necessary to implement their flow proportional share algorithm within Planetlab, the Internet testbed that computer scientists use to test projects in a global environment.

Media contact:
Daniel B. Kane
UCSD Jacobs School of Engineering
858-534-3262 (office)
dbkane@ucsd.edu
Author contacts:
(note, the authors are in Kyoto, Japan during the week of August 27, but are available via email)
Barath Raghavan
barath AT cs DOT ucsd.edu
Alex C. Snoeren
Snoeren AT cs DOT ucsd.edu

Daniel Kane | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>