Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling bandwidth in the clouds

30.08.2007
If half your company’s bandwidth is allocated to your mirror in New York, and it’s the middle of the night there, and your sites in London and Tokyo are slammed, that New York bandwidth is going to waste. UC San Diego computer scientists have designed, implemented, and evaluated a new bandwidth management system for cloud-based applications capable of solving this problem.

The UCSD algorithm enables distributed rate limiters to work together to enforce global bandwidth rate limits, and dynamically shift bandwidth allocations across multiple sites or networks, according to current network demand.

“With our system, an organization with mirrored Web sites or other services across the globe could dynamically shift its bandwidth allocations between sites based on demand. You can’t do that now, and this lack of control is a significant drawback to today’s cloud-based computing approaches,” said Barath Raghavan, the first author on a new paper describing the work, and a Ph.D. candidate in the Department of Computer Science and Engineering at UCSD’s Jacobs School of Engineering.

On August 30, this work will be presented in Kyoto, Japan at ACM SIGCOMM, one of the world’s most prestigious networking conferences. It earned the 2007 SIGCOMM best student paper award – the top prize at the conference.

Raghavan’s paper “Cloud Control with Distributed Rate Limiting,” is co-authored with Kashi Vishwanath, Sriram Ramabhadran – two fellow UCSD computer science Ph.D. students – Kenneth Yocum (a UCSD computer science researcher) and Alex C. Snoeren, a computer science professor from UCSD’s Jacobs School of Engineering.

The “flow proportional share” algorithm the UCSD computer scientists created enables the coordinated policing of a cloud-based service’s network traffic, and therefore, the cost associated with this traffic. The TCP-centric design is scalable to hundreds of nodes, runs with very low overhead, and is robust to both loss and communication delay, making it practical for deployment in nationwide service providers, the authors write. TCP (Transmission Control Protocol) is the Internet protocol that establishes a connection between two hosts and ensures that packets travel safely from sender to receiver; TCP is used for the vast majority of Internet traffic.

“Our primary insight is that we can use TCP itself to estimate bandwidth demand,” said Alex Snoeren, the senior author on the paper. “Relying on TCP, we can provide the fairness that you would see with one central rate limiter. From the perspective of the actual network flows that are going through it, we have made our distributed rate limiter look centralized. This is the main technical contribution of the paper,” said Snoeren.

Distributed rate limiting could be useful in a variety of ways:

* Cloud-based resource providers could control the use of network bandwidth, and associated costs, as if all the bandwidth were sourced from a single pipe.

* For content-distribution networks that currently provide replication services to third-party Web sites, distributed rate limiting could provide a powerful tool for managing access to client content.

* Internet testbeds such as Planetlab are often overrun with network demands from users. Distributed rate limiting could bring the bandwidth crisis under control and render such research tools much more effective.

Going with the (TCP) Flow

When you connect to a Web site, you open a TCP flow between your personal computing device and the Web site. As more people connect to the same site, the number of flows increases and the bandwidth gets split up fairly among the growing number of users. The flow proportional share algorithm from UCSD monitors the flows at each of the distributed sites and finds the largest flow at each site. Based on how fast packets are moving along the largest flow, the algorithm reverse engineers the network demand at each rate limiter.

A gossip protocol communicates these demand values among all the associated rate limiters. Next, the new algorithm ranks the rate limiters according to network traffic demands and splits the bandwidth accordingly.

“Our algorithm allows individual flows to compete dynamically for bandwidth not only with flows traversing the same limiter, but with flows traversing other limiters as well,” Raghavan explained.

The UCSD computer scientists performed extensive evaluations of their system, using Jain’s fairness index as a metric of inter-flow fairness. In a wide variety of Internet traffic patterns, the authors demonstrated that their approach to distributed limiting of the rate of bandwidth usage works as well as a single rate limiter would work, with very little overhead.

“As computing shifts to a cloud-based model, there is an opportunity to reconsider how network resources are allocated,” said Stefan Savage, a UCSD computer scientist not involved in the study.

Right now, Raghavan and co-author Kenneth Yocum are working on the code necessary to implement their flow proportional share algorithm within Planetlab, the Internet testbed that computer scientists use to test projects in a global environment.

Media contact:
Daniel B. Kane
UCSD Jacobs School of Engineering
858-534-3262 (office)
dbkane@ucsd.edu
Author contacts:
(note, the authors are in Kyoto, Japan during the week of August 27, but are available via email)
Barath Raghavan
barath AT cs DOT ucsd.edu
Alex C. Snoeren
Snoeren AT cs DOT ucsd.edu

Daniel Kane | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>