Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software Coordinates 19 Mirrors, Focuses James Webb Space Telescope

28.08.2007
Scientists and engineers have created and successfully tested a set of algorithms and software programs which are designed to enable the 19 individual mirrors comprising NASA's powerful James Webb Space Telescope to function as one very sensitive telescope.

NASA researchers will present findings on these algorithms and software programs, called the "Wavefront Sensing and Controls" at the Optics and Photonics meeting of the Society for Photo-Optical Instrumentation Engineers (SPIE) meeting. The SPIE meeting will be held at the San Diego Convention Center, 111 West Harbor Drive, San Diego, Calif., August 26-30. The session, called "TRL-6 for JWST Wavefront Sensing and Control" will be on Sunday, August 26 from 11:30 a.m. - 11:50 a.m. PDT, in room 29B, and is Paper 6687-7 of Conference 6687.

After its launch in 2013, when the Webb Telescope settles into its vantage point about one million miles from Earth, and periodically thereafter, the orientations of the telescope’s 18 primary mirror segments and the position of the secondary mirror will have to be adjusted to bring light from the universe into focus. Through a process called "Wavefront Sensing and Control," or WFSC, software aboard the observatory will compute the optimum position of each of the 19 mirrors, and then adjust the positions, if necessary.

The Webb Telescope's 18 primary mirror segments cover a combined total area of 25 square meters (approx. 30 square yards) and a diameter of 6.5 meters (approx. 21 feet). "It's critical that all 18 mirror segments be aligned in position so that they act as one smooth surface, and the secondary mirror be placed exactly right," said Bill Hayden, Systems Engineer at NASA Goddard Space Flight Center, Greenbelt, Md. "This will allow scientists to clearly focus on very dim objects that we can't see now."

The WFSC system is put to work when the telescope takes digital pictures of a star. It then processes the images through mathematical algorithms to calculate the mirror adjustments required to bring the stellar image into focus. When the individual mirrors are properly aligned, the Webb Telescope will be able to obtain extraordinarily sharp images and detect the faint glimmer of a distant galaxy.

Recently, a team of engineers from Ball Aerospace & Technologies Corp., Boulder, Colo. and NASA successfully tested the WFSC algorithms, proving they are ready to work on the Webb Telescope in space. The algorithms were tested on a detailed scale model of the 6.5 meter space telescope and through computer simulations.

"This major technological accomplishment, which built on the legacy of software algorithms used to fix the Hubble Space Telescope and align the Keck telescope, is a major step forward in the development of JWST. This achievement was the result of great teamwork between Ball Aerospace, NASA Goddard Space Flight Center, and the Jet Propulsion Laboratory," said John Mather, Senior Project Scientist on the Webb telescope at Goddard and the 2006 winner of the Nobel Prize in Physics.

"The same technological ingenuity Ball Aerospace applied to correcting the Hubble Space Telescope’s primary mirror in 1993 is being applied to advancing the optics for the JWST observatory," said David L. Taylor, president and chief executive officer of Ball Aerospace & Technologies Corp.

The Webb Telescope is designed to study the faint light from objects at the farthest reaches of space and time.

SPIE is an international society advancing an interdisciplinary approach to the science and application of light. This conference and exhibition focuses on where optical engineering meets emerging technologies of nanotechnology and science, photonic devices and solar energy and their applications.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>