Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software Coordinates 19 Mirrors, Focuses James Webb Space Telescope

28.08.2007
Scientists and engineers have created and successfully tested a set of algorithms and software programs which are designed to enable the 19 individual mirrors comprising NASA's powerful James Webb Space Telescope to function as one very sensitive telescope.

NASA researchers will present findings on these algorithms and software programs, called the "Wavefront Sensing and Controls" at the Optics and Photonics meeting of the Society for Photo-Optical Instrumentation Engineers (SPIE) meeting. The SPIE meeting will be held at the San Diego Convention Center, 111 West Harbor Drive, San Diego, Calif., August 26-30. The session, called "TRL-6 for JWST Wavefront Sensing and Control" will be on Sunday, August 26 from 11:30 a.m. - 11:50 a.m. PDT, in room 29B, and is Paper 6687-7 of Conference 6687.

After its launch in 2013, when the Webb Telescope settles into its vantage point about one million miles from Earth, and periodically thereafter, the orientations of the telescope’s 18 primary mirror segments and the position of the secondary mirror will have to be adjusted to bring light from the universe into focus. Through a process called "Wavefront Sensing and Control," or WFSC, software aboard the observatory will compute the optimum position of each of the 19 mirrors, and then adjust the positions, if necessary.

The Webb Telescope's 18 primary mirror segments cover a combined total area of 25 square meters (approx. 30 square yards) and a diameter of 6.5 meters (approx. 21 feet). "It's critical that all 18 mirror segments be aligned in position so that they act as one smooth surface, and the secondary mirror be placed exactly right," said Bill Hayden, Systems Engineer at NASA Goddard Space Flight Center, Greenbelt, Md. "This will allow scientists to clearly focus on very dim objects that we can't see now."

The WFSC system is put to work when the telescope takes digital pictures of a star. It then processes the images through mathematical algorithms to calculate the mirror adjustments required to bring the stellar image into focus. When the individual mirrors are properly aligned, the Webb Telescope will be able to obtain extraordinarily sharp images and detect the faint glimmer of a distant galaxy.

Recently, a team of engineers from Ball Aerospace & Technologies Corp., Boulder, Colo. and NASA successfully tested the WFSC algorithms, proving they are ready to work on the Webb Telescope in space. The algorithms were tested on a detailed scale model of the 6.5 meter space telescope and through computer simulations.

"This major technological accomplishment, which built on the legacy of software algorithms used to fix the Hubble Space Telescope and align the Keck telescope, is a major step forward in the development of JWST. This achievement was the result of great teamwork between Ball Aerospace, NASA Goddard Space Flight Center, and the Jet Propulsion Laboratory," said John Mather, Senior Project Scientist on the Webb telescope at Goddard and the 2006 winner of the Nobel Prize in Physics.

"The same technological ingenuity Ball Aerospace applied to correcting the Hubble Space Telescope’s primary mirror in 1993 is being applied to advancing the optics for the JWST observatory," said David L. Taylor, president and chief executive officer of Ball Aerospace & Technologies Corp.

The Webb Telescope is designed to study the faint light from objects at the farthest reaches of space and time.

SPIE is an international society advancing an interdisciplinary approach to the science and application of light. This conference and exhibition focuses on where optical engineering meets emerging technologies of nanotechnology and science, photonic devices and solar energy and their applications.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>