Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers generate high-speed pulses of laser light on silicon, speeding data transmission

23.08.2007
In the Sept. 3 issue of Optical Society of America's Optics Express, published online today, researchers announce that they have built the world's first "mode-locked silicon evanescent laser."

Mode-locked evanescent lasers can deliver stable short pulses of laser light that are useful for many optical applications, including high-speed data transmission, multiple wavelength generation, remote sensing (LIDAR) and highly accurate optical clocks. This new work is a significant step toward the goal of combining lasers and other key optical components on silicon, providing a way to integrate optical and electronic functions on a single chip and enabling new types of integrated circuits. It introduces a more practical technology with lower cost, lower power consumption and more compact devices.

Summary
Present-day computer technology depends on weak electrical currents for data communication within the silicon-based microprocessor. By causing silicon to emit light and exhibit other potentially useful optical properties, integration of photonic devices on silicon becomes possible. The problem in the past – it is extremely difficult, nearly impossible, to create a laser in silicon.

Less than one year ago, a research team led by John Bowers at the University of California, Santa Barbara and Intel successfully created laser light from electrical current on silicon by placing a layer of indium phosphide (InP), an important technology in high-speed communication, above the silicon. In this new study, electrically-pumped lasers emitting 40 billion pulses of light per second were demonstrated, built on the hybrid silicon platform developed the year prior. This is the first-ever achievement of such a rate in silicon and one that matches the rates produced by other media in standard use today. These short pulses are composed of many evenly spaced colors of laser light, which could be separated and each used to transmit different high-speed information, replacing the need for hundreds of lasers with just one.

Creating optical components in silicon will lead to optoelectronic devices that can increase the amount and speed of data transmission in computer chips while using existing silicon technology. Employing existing silicon technology is a desirable goal because it would represent a potentially less expensive and easier-to-implement way of mass-producing future-generation devices that use both electrons and photons to process information, rather than just electrons as has been the case in the past. This advance was made possible by funds from the Microsystems Technology Office of the Defense Advanced Research Projects Agency (DARPA) at the United States Department of Defense.

Paper
"Mode-Locked Silicon Evanescent Lasers," Optics Express, Vol. 15, Issue 18.
Abstract
We demonstrate electrically pumped lasers on silicon that produce pulses at repetition rates up to 40 GHz, even without RF drive. The mode locked lasers generate 4 ps pulses with low jitter and extinction ratios above 18 dB, making them suitable for data and telecommunication transmitters and for clock generation and distribution. Results of both passive and hybrid mode locking are discussed. This type of device could enable new silicon based integrated technologies, such as optical time division multiplexing (OTDM), wavelength division multiplexing (WDM), and optical code division multiple access (OCDMA).

Colleen Morrison | EurekAlert!
Further information:
http://www.osa.org

More articles from Information Technology:

nachricht Defining the backbone of future mobile internet access
21.07.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht Researchers create new technique for manipulating polarization of terahertz radiation
20.07.2017 | Brown University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>