Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers generate high-speed pulses of laser light on silicon, speeding data transmission

23.08.2007
In the Sept. 3 issue of Optical Society of America's Optics Express, published online today, researchers announce that they have built the world's first "mode-locked silicon evanescent laser."

Mode-locked evanescent lasers can deliver stable short pulses of laser light that are useful for many optical applications, including high-speed data transmission, multiple wavelength generation, remote sensing (LIDAR) and highly accurate optical clocks. This new work is a significant step toward the goal of combining lasers and other key optical components on silicon, providing a way to integrate optical and electronic functions on a single chip and enabling new types of integrated circuits. It introduces a more practical technology with lower cost, lower power consumption and more compact devices.

Summary
Present-day computer technology depends on weak electrical currents for data communication within the silicon-based microprocessor. By causing silicon to emit light and exhibit other potentially useful optical properties, integration of photonic devices on silicon becomes possible. The problem in the past – it is extremely difficult, nearly impossible, to create a laser in silicon.

Less than one year ago, a research team led by John Bowers at the University of California, Santa Barbara and Intel successfully created laser light from electrical current on silicon by placing a layer of indium phosphide (InP), an important technology in high-speed communication, above the silicon. In this new study, electrically-pumped lasers emitting 40 billion pulses of light per second were demonstrated, built on the hybrid silicon platform developed the year prior. This is the first-ever achievement of such a rate in silicon and one that matches the rates produced by other media in standard use today. These short pulses are composed of many evenly spaced colors of laser light, which could be separated and each used to transmit different high-speed information, replacing the need for hundreds of lasers with just one.

Creating optical components in silicon will lead to optoelectronic devices that can increase the amount and speed of data transmission in computer chips while using existing silicon technology. Employing existing silicon technology is a desirable goal because it would represent a potentially less expensive and easier-to-implement way of mass-producing future-generation devices that use both electrons and photons to process information, rather than just electrons as has been the case in the past. This advance was made possible by funds from the Microsystems Technology Office of the Defense Advanced Research Projects Agency (DARPA) at the United States Department of Defense.

Paper
"Mode-Locked Silicon Evanescent Lasers," Optics Express, Vol. 15, Issue 18.
Abstract
We demonstrate electrically pumped lasers on silicon that produce pulses at repetition rates up to 40 GHz, even without RF drive. The mode locked lasers generate 4 ps pulses with low jitter and extinction ratios above 18 dB, making them suitable for data and telecommunication transmitters and for clock generation and distribution. Results of both passive and hybrid mode locking are discussed. This type of device could enable new silicon based integrated technologies, such as optical time division multiplexing (OTDM), wavelength division multiplexing (WDM), and optical code division multiple access (OCDMA).

Colleen Morrison | EurekAlert!
Further information:
http://www.osa.org

More articles from Information Technology:

nachricht Japanese researchers develop ultrathin, highly elastic skin display
19.02.2018 | University of Tokyo

nachricht Why bees soared and slime flopped as inspirations for systems engineering
19.02.2018 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>