Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers generate high-speed pulses of laser light on silicon, speeding data transmission

23.08.2007
In the Sept. 3 issue of Optical Society of America's Optics Express, published online today, researchers announce that they have built the world's first "mode-locked silicon evanescent laser."

Mode-locked evanescent lasers can deliver stable short pulses of laser light that are useful for many optical applications, including high-speed data transmission, multiple wavelength generation, remote sensing (LIDAR) and highly accurate optical clocks. This new work is a significant step toward the goal of combining lasers and other key optical components on silicon, providing a way to integrate optical and electronic functions on a single chip and enabling new types of integrated circuits. It introduces a more practical technology with lower cost, lower power consumption and more compact devices.

Summary
Present-day computer technology depends on weak electrical currents for data communication within the silicon-based microprocessor. By causing silicon to emit light and exhibit other potentially useful optical properties, integration of photonic devices on silicon becomes possible. The problem in the past – it is extremely difficult, nearly impossible, to create a laser in silicon.

Less than one year ago, a research team led by John Bowers at the University of California, Santa Barbara and Intel successfully created laser light from electrical current on silicon by placing a layer of indium phosphide (InP), an important technology in high-speed communication, above the silicon. In this new study, electrically-pumped lasers emitting 40 billion pulses of light per second were demonstrated, built on the hybrid silicon platform developed the year prior. This is the first-ever achievement of such a rate in silicon and one that matches the rates produced by other media in standard use today. These short pulses are composed of many evenly spaced colors of laser light, which could be separated and each used to transmit different high-speed information, replacing the need for hundreds of lasers with just one.

Creating optical components in silicon will lead to optoelectronic devices that can increase the amount and speed of data transmission in computer chips while using existing silicon technology. Employing existing silicon technology is a desirable goal because it would represent a potentially less expensive and easier-to-implement way of mass-producing future-generation devices that use both electrons and photons to process information, rather than just electrons as has been the case in the past. This advance was made possible by funds from the Microsystems Technology Office of the Defense Advanced Research Projects Agency (DARPA) at the United States Department of Defense.

Paper
"Mode-Locked Silicon Evanescent Lasers," Optics Express, Vol. 15, Issue 18.
Abstract
We demonstrate electrically pumped lasers on silicon that produce pulses at repetition rates up to 40 GHz, even without RF drive. The mode locked lasers generate 4 ps pulses with low jitter and extinction ratios above 18 dB, making them suitable for data and telecommunication transmitters and for clock generation and distribution. Results of both passive and hybrid mode locking are discussed. This type of device could enable new silicon based integrated technologies, such as optical time division multiplexing (OTDM), wavelength division multiplexing (WDM), and optical code division multiple access (OCDMA).

Colleen Morrison | EurekAlert!
Further information:
http://www.osa.org

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>