Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grid helps find one picture in a million

07.08.2007
Looking for images on the internet can be a frustrating business. Whether you want the perfect sunset over the sea or the London skyline by night, you’re dependent on people to describe the images on their web pages.

Now Imense Ltd, a high-tech Cambridge start-up, has announced new investment to help them become the ‘Google’ of image searching, using their revolutionary technology. To test their software, they’ve made an unexpected partnership with a group of particle physicists using a massive computer Grid.

Professor Keith Mason, Chief Executive of the Science and Technology Facilities Council (STFC) describes how this happened “We actively encourage the researchers we fund to consider the wider applications of the work they do. In this case, computing problems that had to be addressed for particle physics can also be used to solve other challenges with large amounts of data. The Council’s Knowledge Exchange Service put the two teams together and provided modest funding to start them off – the new investment attracted by Imense represents a ten-fold return on the initial development funds.”

Images and video make up over 70% of the digital data available on the Internet, an estimated 15 billion images, but traditional search engines can’t index this information directly, instead relying on text descriptions entered by hand. Imense’s key innovation is a new form of image retrieval that automatically analyses images in terms of their content, without the need for human generated captions. They have also developed a powerful query language that lets people search for the images they need.

Dr David Sinclair, one of the founders of Imense Ltd, explains, “We built a prototype of our new image analysis and search technology, but simply weren’t able to test our software on sufficiently large numbers of photos. We knew we could search tens of thousands of pictures, but couldn't afford to try it on hundreds of thousands or millions of images. This made it difficult for Imense to get the investment we needed to develop a commercially viable product. That’s where our partnership with the particle physics Grid came in.”

Spread across 17 sites, the UK particle physics Grid (GridPP) has been built to analyse the petabytes of data expected from Europe’s newest particle accelerator, the Large Hadron Collider. But its 8000 computers have also been shared with other researchers, from geophysicists to biologists. Last year, Sinclair attended a meeting arranged by STFC about Grid opportunities for industry, and realized that Grid technology could be the answer to Imense’s problem. Image analysis is a naturally parallel process which fits perfectly with the capabilities of the Grid used by STFC scientists to process data in particle physics.

Professor Andy Parker, Director of the eScience Centre, University of Cambridge, led the particle physics team working with Imense, “Our team helped Imense develop their software to run on the Grid using a tool called Ganga, and supported them as they analysed three million images. We also dealt with issues such as security and working with Grid managers at other universities, who were very helpful. It went very smoothly and was fascinating to see the company start-up process in action.”

Imense have now reaped the rewards of their Grid experience, with an investment of more than £500,000 to help them bring a product or service to market in the coming months. Dr Sinclair says that the Grid played a major role in this, “Our work with the Grid has let us demonstrate that our software can handle millions of images, at a time when we were a small company and couldn’t supply the computing power needed ourselves. This in turn impressed the investors we spoke to, and led to funding for our company.” Imense plans to use the open source Grid technologies from the particle physics domain in its commercial product.

Alex Efimov led the brokering work for STFC’s Knowledge Exchange Service and companies wishing to know more should contact him on the number below.

Julia Maddock | alfa
Further information:
http://www.stfc.ac.uk

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>