Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic tape analysis 'sees' tampering in detail

24.07.2007
The National Institute of Standards and Technology (NIST) has developed an improved version of a real-time magnetic microscopy system that converts evidence of tampering on magnetic audio and video tapes—erasing, overdubbing and other alterations—into images with four times the resolution previously available.

This system is much faster than conventional manual analysis and offers the additional benefit of reduced risk of contaminating the tapes with magnetic powder. NIST recently delivered these new capabilities to the Federal Bureau of Investigation (FBI) for validation as a forensic tool.

Earlier versions of this system made images with a resolution of about 400 dots per inch (dpi). www.nist.gov/public_affairs/releases/tape_analysis.htm. The new system uses four times as many magnetic sensors, 256, embedded on a NIST-made silicon chip that serves as a read head in a modified cassette tape deck. The NIST read head operates adjacent to a standard read head, enabling investigators to listen to a tape while simultaneously viewing the magnetic patterns on a computer monitor. Each sensor in the customized read head changes electrical resistance in response to magnetic field patterns detected on the tape. NIST developed the mechanical system for extracting a tape from its housing and transporting it over the read heads, the electronics interface, and software that convert maps of sensor resistance measures into digital images.

The upgrade included quadrupling the image resolution to 1600 dpi, the capability to scan both video and audio tapes, complete computer control of tape handling, and the capability to digitize the audio directly from the acquired image. The software displays the audio magnetic track pattern from the tape to identify tiny features, from over-recording marks to high-intensity signals from gunshots. The system is designed to analyze analog tapes but could be converted to work with digital tapes, according to project leader David Pappas.

The new nanoscale magnetic microscope also has been used experimentally for non-destructive evaluation of integrated circuits. By mapping tiny changes in magnetic fields across an integrated circuit, the device can build up an image of current flow and densities much faster and in greater detail than the single-sensor scanners currently used by the chip industry, says Pappas.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Information Technology:

nachricht Goodbye, login. Hello, heart scan
26.09.2017 | University at Buffalo

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>