Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three linked grids reveal unsuspected property of clay

12.07.2007
A UK e-Science project has shed light on the secret life of clay. At a certain size, microscopic sheets of clay start to undulate, something that has never been observed in this material before.

The finding emerged from some of the largest computer simulations ever attempted which required the pooled resources of supercomputers on three grids across two continents. The research is expected to provide insights into the properties of an important class of new materials, clay polymer nanocomposites, which are under investigation for many applications, for example as materials for use in car bodies.

Supercomputers on the UK National Grid Service, the US TeraGrid and DEISA (EU Distributed European Infrastructure for Supercomputing Applications), linked by dedicated high speed optical networks including UKLight, were pressed into service. Professor Peter Coveney and colleagues from University College London (UCL) used these resources to produce simulations of five computer models of the platelets that lock together to form clay sheets, the difference between each model being its size and complexity. Each model simulated accurately the motion and interactions between all the atoms in two sheets of clay separated by a layer of water and sodium ions. In the largest model, the motions of nearly 10 million atoms were taken into account. The simulations were run over timescales of up to 2 nanoseconds (a nanosecond is a billionth of a second).

By using distributed high performance computers linked by grids, it was possible to perform the many and vast simulations concurrently. Without such a facility, the time taken to perform the simulations on one supercomputer alone would have been too long to make the study practicable. The team was able to access these resources across multiple domains using grid middleware, called the Application Hosting Environment, which was originally developed under RealityGrid, an EPSRC funded e-Science project.

Data from the simulations were returned to computers back at UCL for visualisation. “Optical networks enabled us to link these grids together. The amount of data we produced is very large and UKLight is very valuable for getting the data back to us here,” says Professor Coveney.

The visualisations revealed the undulations. “As we moved from smaller to larger models we began to see collective undulations – the clay platelet sheets fluctuate up and down,” says Professor Coveney. This property, which was not known before in clay materials, is on too small a scale to be easily verified by experiment. But it has implications for the properties of clay on an ordinary scale which can be computed and then compared with experiment. For example, the team has used the response of the clay sheets to the undulations to calculate their elasticity (or Young’s modulus).

As a next step, the group plans to simulate clay platelets embedded in a polymer matrix. Such clay-polymer nanocomposites are under investigation for a number of applications ranging from car bodies and other automotive uses, through oilfield technology to drinks packaging. Compared with polymers alone, they have far greater mechanical strength, improved fire retardant properties and they make better barriers to the diffusion of gas. “These simulations will give us a better understanding of the properties of these new and important materials,” says Professor Coveney.

The work is published in the Journal of Physical Chemistry vol.111 pp8248-8259 2007.

Julia Short | alfa
Further information:
http://www.rcuk.ac.uk

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>