Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Three linked grids reveal unsuspected property of clay

A UK e-Science project has shed light on the secret life of clay. At a certain size, microscopic sheets of clay start to undulate, something that has never been observed in this material before.

The finding emerged from some of the largest computer simulations ever attempted which required the pooled resources of supercomputers on three grids across two continents. The research is expected to provide insights into the properties of an important class of new materials, clay polymer nanocomposites, which are under investigation for many applications, for example as materials for use in car bodies.

Supercomputers on the UK National Grid Service, the US TeraGrid and DEISA (EU Distributed European Infrastructure for Supercomputing Applications), linked by dedicated high speed optical networks including UKLight, were pressed into service. Professor Peter Coveney and colleagues from University College London (UCL) used these resources to produce simulations of five computer models of the platelets that lock together to form clay sheets, the difference between each model being its size and complexity. Each model simulated accurately the motion and interactions between all the atoms in two sheets of clay separated by a layer of water and sodium ions. In the largest model, the motions of nearly 10 million atoms were taken into account. The simulations were run over timescales of up to 2 nanoseconds (a nanosecond is a billionth of a second).

By using distributed high performance computers linked by grids, it was possible to perform the many and vast simulations concurrently. Without such a facility, the time taken to perform the simulations on one supercomputer alone would have been too long to make the study practicable. The team was able to access these resources across multiple domains using grid middleware, called the Application Hosting Environment, which was originally developed under RealityGrid, an EPSRC funded e-Science project.

Data from the simulations were returned to computers back at UCL for visualisation. “Optical networks enabled us to link these grids together. The amount of data we produced is very large and UKLight is very valuable for getting the data back to us here,” says Professor Coveney.

The visualisations revealed the undulations. “As we moved from smaller to larger models we began to see collective undulations – the clay platelet sheets fluctuate up and down,” says Professor Coveney. This property, which was not known before in clay materials, is on too small a scale to be easily verified by experiment. But it has implications for the properties of clay on an ordinary scale which can be computed and then compared with experiment. For example, the team has used the response of the clay sheets to the undulations to calculate their elasticity (or Young’s modulus).

As a next step, the group plans to simulate clay platelets embedded in a polymer matrix. Such clay-polymer nanocomposites are under investigation for a number of applications ranging from car bodies and other automotive uses, through oilfield technology to drinks packaging. Compared with polymers alone, they have far greater mechanical strength, improved fire retardant properties and they make better barriers to the diffusion of gas. “These simulations will give us a better understanding of the properties of these new and important materials,” says Professor Coveney.

The work is published in the Journal of Physical Chemistry vol.111 pp8248-8259 2007.

Julia Short | alfa
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>