Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


University supercomputer now the most powerful in the country

The University of Reading now has the most powerful academic supercomputer in the UK – meaning even greater accuracy in research on areas which affect the lives of millions of people.

This means Reading is not only at the forefront of the most accurate research into air pollution modelling, climate change, financial modelling, drug discovery, computational biology and meteorology, but now leads the strategic field of computational science.

Chris Guy, head of Systems Engineering at the University said: “This powerful supercomputer will vastly improve the capability of the University of Reading scientists and others to model many aspects of our world, including such things as climate change, novel drugs and financial markets.

“More accurate predictions in each of these areas, as a result of better modelling, will enable us to make real changes to people’s lives by, for example, showing where flood defences should be built or speeding up the development of life-saving drugs.

“The ACET Centre, School of Systems Engineering and the University is very proud to be able to offer these services to the academic community. Our students will greatly benefit by school staff being at the forefront of world-leading research with so many exciting and challenging applications.”

Thanks to a massive upgrade, the University’s Advanced Computing and Emerging Technologies (ACET) Centre IBM supercomputer is now the most powerful academic computer in Britain, and the second most powerful computer in the UK overall – second only to the supercomputer at nearby AWE in Aldermaston.

Since 1999, IBM has had close links with Professor Vassil Alexandrov, the University’s leading expert on computational science and director of the University’s ACET Centre.

Professor Alexandrov said: “The possibilities of use for this computer are endless. In addition to the advance of computational science, we will be at the cutting edge of giving more precise pollution predictions, speeding up the design of lifesaving drugs, investigating scenarios in climate change and thus making real changes to people’s well being.”

Media contact: Chris Guy on +44 (0) 118 378 8757

The University has upgraded its IBM Blade Centre with 700 JS21 blades, equipped with 3040 IBM PowerPC 970 processor cores each running at 2.3 GHz clock speed with a theoretical peak performance (Rpeak) of 27.97 TFlops, all connected via a Myrinet Interconnect, reaching a measured performance (Rmax) of 19.04 TFlops using the Linpack benchmark, and ranks 36th in the June 2007 top500 list of the biggest supercomputers in the world. This system has access to a 60 TByte storage solution.

OCF, the UK’s premier High Performance Computing (HPC) integrator, is responsible for the design, technology supply, installation and configuration of the entire compute cluster solution.

The compute cluster is a significant upgrade to the earlier system which is still in use at the University and currently ranks 483rd fastest in the world. The design, installation and configuration of this earlier system was also by OCF.

Lucy Ferguson
Media Relations Manager
University of Reading
Tel: +44 (0)118 378 7388
Fax: +44 (0)118 378 5431

Lucy Ferguson | University of Reading
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>