New vibration powered generator for wireless systems

Dr Steve Beeby and his team at the University's School of Electronics & Computer Science (ECS) have developed a kinetic energy generator which generates electrical energy from the vibrations and movements present within its environment.

'This is the most successful generator of its kind and generates energy much more efficiently than any similar device of its size,' said Dr Beeby.

The generator, which is less than 1 cubic cm in size, was developed as part of the EU-funded ?4.13 million VIBES (Vibration Energy Scavenging) project. It has been designed to power wireless sensors that monitor the condition of industrial plant and is intended to be installed within an air compressor unit supplying several laboratories within a building.

It could also be used in wireless, self-powered tyre sensors and if developed further, could even form the basis of technology for self-powered pace makers. The technology offers the potential to replace or augment batteries. The periodic replacement of batteries is not feasible for embedded applications and is highly unattractive in wireless sensor networks containing hundreds of sensor nodes.

'Vibration energy harvesting is receiving a considerable amount of interest as a means for powering wireless sensor nodes,' said Dr Beeby. 'The big advantage of wireless sensor systems is that by removing wires and batteries, there is the potential for embedding sensors in previously inaccessible locations.'

According to Dr Beeby, over the years, there has been a growing interest in the field of low power miniature sensors and wireless sensor networks, but an area that has received comparatively little attention is how to supply the required electrical power to such sensors, particularly if the sensor is completely embedded in the structure with no physical connection to the outside world. He believes that the VIBES generator could hold the solution.

A paper entitled A micro electromagnetic generator for vibration energy harvesting about this research has just been published on the Journal of Micromechanics and Microengineering website. A copy of the paper can be had from Joyce Lewis (tel. 023 8059 5453; email jkl2@ecs.soton.ac.uk).

Dr Beeby and his team plan to exploit this application further through Perpetuum, the world-leading vibration energy-harvesting company which was formed in 2004 as a spin out from the University of Southampton.

Other collaborators in the VIBES project are: Tima – Techniques of Informatics and MicroElectronics for Computer Architecture, France, 01dB-Metravib, France, Phillips Applied Technologies, Belgium, MEMSCAP, France, Femto-st, Dept. LPMO – Laboratory of Physics and the measurement of oscillator, France, Phillips Research, Eindhoven, Netherlands, EPFL- Federal Polytechnical School of Lausanne, Laboratoire de Céramique, Switzerland.

Media Contact

Helene Murphy alfa

More Information:

http://www.soton.ac.uk

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Machine learning algorithm reveals long-theorized glass phase in crystal

Scientists have found evidence of an elusive, glassy phase of matter that emerges when a crystal’s perfect internal pattern is disrupted. X-ray technology and machine learning converge to shed light…

Mapping plant functional diversity from space

HKU ecologists revolutionize ecosystem monitoring with novel field-satellite integration. An international team of researchers, led by Professor Jin WU from the School of Biological Sciences at The University of Hong…

Inverters with constant full load capability

…enable an increase in the performance of electric drives. Overheating components significantly limit the performance of drivetrains in electric vehicles. Inverters in particular are subject to a high thermal load,…

Partners & Sponsors