Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New vibration powered generator for wireless systems

04.07.2007
A generator that is 10 times more powerful than any other similar devices has been developed by engineers at the University of Southampton.

Dr Steve Beeby and his team at the University's School of Electronics & Computer Science (ECS) have developed a kinetic energy generator which generates electrical energy from the vibrations and movements present within its environment.

'This is the most successful generator of its kind and generates energy much more efficiently than any similar device of its size,' said Dr Beeby.

The generator, which is less than 1 cubic cm in size, was developed as part of the EU-funded ?4.13 million VIBES (Vibration Energy Scavenging) project. It has been designed to power wireless sensors that monitor the condition of industrial plant and is intended to be installed within an air compressor unit supplying several laboratories within a building.

It could also be used in wireless, self-powered tyre sensors and if developed further, could even form the basis of technology for self-powered pace makers. The technology offers the potential to replace or augment batteries. The periodic replacement of batteries is not feasible for embedded applications and is highly unattractive in wireless sensor networks containing hundreds of sensor nodes.

'Vibration energy harvesting is receiving a considerable amount of interest as a means for powering wireless sensor nodes,' said Dr Beeby. 'The big advantage of wireless sensor systems is that by removing wires and batteries, there is the potential for embedding sensors in previously inaccessible locations.'

According to Dr Beeby, over the years, there has been a growing interest in the field of low power miniature sensors and wireless sensor networks, but an area that has received comparatively little attention is how to supply the required electrical power to such sensors, particularly if the sensor is completely embedded in the structure with no physical connection to the outside world. He believes that the VIBES generator could hold the solution.

A paper entitled A micro electromagnetic generator for vibration energy harvesting about this research has just been published on the Journal of Micromechanics and Microengineering website. A copy of the paper can be had from Joyce Lewis (tel. 023 8059 5453; email jkl2@ecs.soton.ac.uk).

Dr Beeby and his team plan to exploit this application further through Perpetuum, the world-leading vibration energy-harvesting company which was formed in 2004 as a spin out from the University of Southampton.

Other collaborators in the VIBES project are: Tima - Techniques of Informatics and MicroElectronics for Computer Architecture, France, 01dB-Metravib, France, Phillips Applied Technologies, Belgium, MEMSCAP, France, Femto-st, Dept. LPMO - Laboratory of Physics and the measurement of oscillator, France, Phillips Research, Eindhoven, Netherlands, EPFL- Federal Polytechnical School of Lausanne, Laboratoire de Céramique, Switzerland.

Helene Murphy | alfa
Further information:
http://www.soton.ac.uk

More articles from Information Technology:

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>