Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Welcome to the world of haptics for industrial applications

20.06.2007
Firstly, what is “Haptics”? This term means “of or relating to the sense of touch”. Haptic technology, or haptics, refers to the technology that connects the user to a computerized system via the sense of touch by applying forces, vibrations and/or motions to the user.

Perhaps people do not realize it, but haptic technology is already in our lives. Vibrating phones, gaming controllers and force-feedback control knobs in cars, like BMW’s iDrive, are examples of this technology. These days, you can turn your phone ring tone off, put it in your purse and still feel that someone is calling you when you get a vibration. On the other hand, the Nintendo Wii video game console has been a new revolution for game lovers. The controller, called Wii, provides vibrations (i.e. when you hit the ball in a tennis game) which enhances the virtual sensation.

However, these examples are only the beginning of a cutting-edge technology. In terms of user-computer interaction, touch offers a new way of interacting or manipulating our screen. We used to just have vision and sound, now we also have touch. Thanks to haptic devices, such as, the most well-known PHANToM haptic devices (Figure 1.a and a.b) or hand exoskeleton devices (Figure 1.c), “you can feel or touch what you see”, recognize object shapes, textures, stiffness or grasp them and feeling their weight. Such devices are being used now for virtual modeling, medicine, education, assistive technology for blind people, as well as industrial design and maintenance. Our work addresses the industrial field.

Currently, physical prototypes are replaced by virtual or digital prototypes/models (Computer Aided Design - CAD) to avoid building expensive prototypes, especially in the automotive and aeronautics sectors (Figure 2.a). Increasingly, these CAD systems also allow designers and engineers to carry out assembly processes. The use of touch in CAD systems allows operators to feel forces and local stimuli similar to those in real situations, which provides more intuitive manipulation (i.e. check any defect or decide the most appropriate assembly sequence). On the other hand, different designers, which may be situated over a thousand kilometers away, often collaborate in the design and revision of products to lessen time and lower costs. The objective of this thesis is to research and provide solutions for collaborative haptic assembly systems, where several designers in different locations can grasp virtual parts and assemble them into a digital engine or other mechanical parts (Figure 2.b). To achieve it, a Collaborative Haptic Assembly Simulator, called CHAS, was developed, where two designers can collaborate together in real-time. Trials between Labein (Derio, Bizkaia) and Queen’s University Belfast (Northern Ireland) have verified this system. When performing the assembly task, the operator in Bizkaia could assemble a part into another part grasped by the remote operator in Belfast. Furthermore, the operator in Belfast could feel the collisions with the part grasped by the remote operator.

This is a small step towards new systems of collaboration over the Internet, or a new way of interacting over distance. Doctors will have the ability to remotely diagnose and operate on patients, or we will be able to shake hands virtually.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/tesia_irakurri.asp?hizk=E&Kodea=110&lehiaketa_urtea=2007

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>