Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Welcome to the world of haptics for industrial applications

20.06.2007
Firstly, what is “Haptics”? This term means “of or relating to the sense of touch”. Haptic technology, or haptics, refers to the technology that connects the user to a computerized system via the sense of touch by applying forces, vibrations and/or motions to the user.

Perhaps people do not realize it, but haptic technology is already in our lives. Vibrating phones, gaming controllers and force-feedback control knobs in cars, like BMW’s iDrive, are examples of this technology. These days, you can turn your phone ring tone off, put it in your purse and still feel that someone is calling you when you get a vibration. On the other hand, the Nintendo Wii video game console has been a new revolution for game lovers. The controller, called Wii, provides vibrations (i.e. when you hit the ball in a tennis game) which enhances the virtual sensation.

However, these examples are only the beginning of a cutting-edge technology. In terms of user-computer interaction, touch offers a new way of interacting or manipulating our screen. We used to just have vision and sound, now we also have touch. Thanks to haptic devices, such as, the most well-known PHANToM haptic devices (Figure 1.a and a.b) or hand exoskeleton devices (Figure 1.c), “you can feel or touch what you see”, recognize object shapes, textures, stiffness or grasp them and feeling their weight. Such devices are being used now for virtual modeling, medicine, education, assistive technology for blind people, as well as industrial design and maintenance. Our work addresses the industrial field.

Currently, physical prototypes are replaced by virtual or digital prototypes/models (Computer Aided Design - CAD) to avoid building expensive prototypes, especially in the automotive and aeronautics sectors (Figure 2.a). Increasingly, these CAD systems also allow designers and engineers to carry out assembly processes. The use of touch in CAD systems allows operators to feel forces and local stimuli similar to those in real situations, which provides more intuitive manipulation (i.e. check any defect or decide the most appropriate assembly sequence). On the other hand, different designers, which may be situated over a thousand kilometers away, often collaborate in the design and revision of products to lessen time and lower costs. The objective of this thesis is to research and provide solutions for collaborative haptic assembly systems, where several designers in different locations can grasp virtual parts and assemble them into a digital engine or other mechanical parts (Figure 2.b). To achieve it, a Collaborative Haptic Assembly Simulator, called CHAS, was developed, where two designers can collaborate together in real-time. Trials between Labein (Derio, Bizkaia) and Queen’s University Belfast (Northern Ireland) have verified this system. When performing the assembly task, the operator in Bizkaia could assemble a part into another part grasped by the remote operator in Belfast. Furthermore, the operator in Belfast could feel the collisions with the part grasped by the remote operator.

This is a small step towards new systems of collaboration over the Internet, or a new way of interacting over distance. Doctors will have the ability to remotely diagnose and operate on patients, or we will be able to shake hands virtually.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/tesia_irakurri.asp?hizk=E&Kodea=110&lehiaketa_urtea=2007

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>