Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stable silicon layer makes flat-panel display cheaper

19.03.2002


In a joint project between the Technology Foundation STW and the energy agency Novem at Utrecht University, researchers have developed new silicon layers which are more stable and cheaper than the present amorphous silicon layers. The electronic properties of the present layers in laptop screens and solar cells deteriorate if the material is under ‘stress’, for example due to sunshine or a voltage.



Flat-panel displays and solar cells have a substrate of glass or plastic, which is coated with a thin layer of amorphous silicon. The silicon layer is a semiconductor which, under the influence of a brief local voltage, becomes conductive for a fraction of a second. This property makes it possible to create a potential difference via the amorphous silicon which addresses separate pixels in an active-matrix LCD display. However, the disadvantage of amorphous silicon is its instability. The threshold voltage needed to make the silicon conducting, changes if a prolonged gate voltage is applied. This is the case in thin film transistors, the devices which address the pixels in a flat-panel display. The microscopic mechanism of this ‘metastability’ is still not understood. Accordingly the application of amorphous silicon for thin film transistors in flat-panel displays and solar cells has not yet reached its full potential.
In the research project from STW and Novem, the Utrecht researchers tried to improve the electronic material properties of the silicon layers. They developed silicon layers which are more stable than the commonly used layers of amorphous silicon. By means of a simple method, hot-wire chemical vapour deposition, they also managed to deposit this layer at a rate ten times higher than conventional techniques. This considerably reduces the production costs of flat-panel displays and solar cells. This could be interesting for manufacturers of displays and solar cells and for the semiconductor industry.

For further information please contact Dr Bernd Stannowski (Debye Institute, Utrecht University), tel. + 31(0) 30 2532964, fax +31 (0)30 2543165, e-mail b.stannowski@phys.uu.nl. Information is also available on the Internet at www1.phys.uu.nl/wwwgf. The doctoral thesis was defended on 27 February 2002. Mr Stannowski’s supervisors were Prof. R.E.I. Schropp and Prof. W.F. van der Weg.

Michel Philippens | alphagalileo

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>