Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silterra and IMEC to continue joint technology development project

14.06.2007
Silterra Malaysia, a leading foundry in Malaysia and IMEC, Europe’s leading independent nanoelectronics and nanotechnology research center based in Belgium, today announced that they have signed an agreement for a joint development project (JDP) to create a foundry-compatible 90-nm CMOS process technology with intention to further scale to 65-nm. A 110-nm derivative will also be developed in parallel. This collaborative project is an extension of the JDP conducted earlier for the 0.13-micron (130-nm) technology and which is already in production at Silterra.

The technology will be ready for production in the second half of 2008 or earlier and will, among other things, utilize low-K inter-metal dielectric and the 193-nm patterning process. The smaller geometries will allow for smaller die sizes and faster transistors, bringing a better price-performance profile to Silterra’s customers. A team of Silterra and IMEC engineers will fine-tune the base-IMEC process at IMEC’s research facility in Leuven to meet the specifications defined by Silterra. The process will have physical design rules and electrical characteristics that match mainstream technologies, enabling customers to seamlessly support their multi-foundry sourcing strategy.

“Silterra is committed to the pure foundry business and more advanced process technology development is essential to support the success of our customers. Many of our major customers adopted the multi-foundry strategy and we will continue to grow with them. This project paves the way towards future technology nodes and a migration path to 300mm,” said Kah-Yee Eg, CEO of Silterra. “As proven in our earlier engagement with IMEC, this JDP will enable Silterra to bring a new process into production quickly.”

“We are very pleased that we will continue the successful collaboration with Silterra to develop a foundry process that will benefit such a wide customer base,” stated Prof. Gilbert Declerck, president and CEO of IMEC. “Our 90-nm platform technology is a great starting point to build on because it is proven and will help shorten development cycle times significantly.”

The new process, like Silterra’s own foundry compatible 0.13- and 0.18-micron logic technologies, is targeted for a wide range of products for consumer, communications and computational applications. In addition, the technology is also optimized for CPU, DSP and graphics applications. This jointly developed foundry process opens the door for Silterra to collaborate with other foundry players in rapidly bringing advanced node densities to production.

“We see significant business growth in the next 2-3 years and will continue to actively invest in process technology,” said Eg. “We had built up strong in-house capabilities in developing process technologies for specific applications such as RF, High Voltage and Low Power in 0.18-micron for the past few years and we are currently developing these application specific process technologies on 0.13-micron. We will continue to move these technologies down to 90-nm and 65-nm with our customers. Our aim is to offer the best total solution to our customers – and the availability of technologies for the right process node is critical to that goal.”

Katrien Marent | alfa
Further information:
http://www.silterra.com
http://www.imec.be

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

How cheetahs stay fit and healthy

24.03.2017 | Life Sciences

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>