Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Walk like an Egyptian (or a Roman) – experience what the past really looked like

16.05.2007
What was it like to walk round the Colosseum when the Roman Empire was at its height? How would the experience have differed from that of a tourist today?

Our understanding of what life was like in bygone eras could be boosted, thanks to a new initiative aiming to depict more accurately and realistically how heritage sites may have looked in their heyday.

Computer scientists and cultural heritage researchers are assessing whether today’s increasingly sophisticated 3-d computer technology can be combined with the most recent historical evidence to produce significantly improved visual reconstructions of churches, palaces and other ancient sites.

This could help historians, students and museum visitors gain a much better feel of how such sites were perceived by the people who used them in the past and what it was actually like to be there. The project is being funded by the Engineering and Physical Sciences Research Council (EPSRC). The work is being carried out by researchers from Warwick Manufacturing Group and the new Warwick Digital Laboratory, University of Warwick.

In particular, the effects of smoke, dust, fog and interior lighting conditions (all of which would have impacted on the way that buildings were experienced by contemporaries) can now be modelled very accurately, for the first time. New developments in display technology also mean it is possible to produce images that are many times brighter, more vivid in colour, incorporate better contrast between light and dark – and are therefore much more realistic – than those previously achievable.

Harnessing such capabilities developed by leading-edge organisations in these specialised fields, the Warwick team is the first to examine whether they can be combined with the most up-to-date literary and archaeological evidence (about a site’s characteristics, usage etc) and used to create 3-d computer reconstructions that provide new insight into the past.

“We’re trying to produce images that show more realistically the actual conditions of the time we’re looking back at,” says Professor Alan Chalmers, who is leading the project. “Achieving this involves taking up-to-date historical evidence and combining it with the very latest in 3-d computer technology.”

“The future might see the combining of extremely accurate, high-fidelity 3-d representations with temperature, smell, sound and other parameters,” comments Professor Chalmers. “Our work may lead to a significant new tool that could help put us in closer touch with the past.”

The high-fidelity computer graphics techniques being developed within this project are equally applicable to other fields which require highly realistic visualisation, including medical images, product design, architecture and crime scene reconstruction.

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Information Technology:

nachricht New 3-D display takes the eye fatigue out of virtual reality
22.06.2017 | The Optical Society

nachricht Modeling the brain with 'Lego bricks'
19.06.2017 | University of Luxembourg

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>