Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer models can accurately predict the mechanical stresses in the patients’ skeleton

10.05.2007
Journal of Biomechanics, the most prestigious journal in biomechanical research, published on 12 April 2007 the electronic preprint of a paper entitled: “Schileo E, Taddei F, Malandrino A, Cristofolini L, Viceconti M. Subject-specific finite element models can accurately predict strain levels in long bones. J Biomech. 2007 Apr 12; [Epub ahead of print]”.

In this study the computational Biomechanics group lead by Fulvia Taddei at the Medical Technology Lab of the Rizzoli Orthopaedic Institute in Bologna, Italy, reports about an extensive validation study of the so-called subject-specific finite element analysis. This method makes possible the creation of computer models capable of predicting the mechanical stresses in any region of the skeleton of a given patient, starting only from a Computed Tomography exam of that subject.

In the study eight cadaver bones instrumented with dozen of sensors and subjected to multiple physiological loading conditions were used by the Experimental Biomechanics group lead by Luca Cristofolini to determine the mechanical stresses in the region of the proximal femur, consider one of the most difficult to model accurately.

Then the eight cadaver bones were examined with a standard clinical CT procedure; the eight computer models generated from these data were used to predict the mechanical stresses in the same loading conditions, and the predictions were then compared to the measured values. The study confirmed that the method developed at the Medical Technology Lab has accuracy better than 10%, which twice more accurate than any other previously published study.

This level of accuracy makes possible the introduction of these subject-specific predictive models in the clinical practice, in applications such as the prediction of the risk of fracture in osteoporotic patients, the preoperative planning of complex skeletal reconstructions in paediatric oncology or in traumatology, or the retrospective investigation of joint arthoplasties that failed in relation to biomechanical factors.

Annalisa Bandieri | alfa
Further information:
http://www.tecno.ior.it

More articles from Information Technology:

nachricht Cloud technology: Dynamic certificates make cloud service providers more secure
15.01.2018 | Technische Universität München

nachricht New discovery could improve brain-like memory and computing
10.01.2018 | University of Minnesota

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>