Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer models can accurately predict the mechanical stresses in the patients’ skeleton

10.05.2007
Journal of Biomechanics, the most prestigious journal in biomechanical research, published on 12 April 2007 the electronic preprint of a paper entitled: “Schileo E, Taddei F, Malandrino A, Cristofolini L, Viceconti M. Subject-specific finite element models can accurately predict strain levels in long bones. J Biomech. 2007 Apr 12; [Epub ahead of print]”.

In this study the computational Biomechanics group lead by Fulvia Taddei at the Medical Technology Lab of the Rizzoli Orthopaedic Institute in Bologna, Italy, reports about an extensive validation study of the so-called subject-specific finite element analysis. This method makes possible the creation of computer models capable of predicting the mechanical stresses in any region of the skeleton of a given patient, starting only from a Computed Tomography exam of that subject.

In the study eight cadaver bones instrumented with dozen of sensors and subjected to multiple physiological loading conditions were used by the Experimental Biomechanics group lead by Luca Cristofolini to determine the mechanical stresses in the region of the proximal femur, consider one of the most difficult to model accurately.

Then the eight cadaver bones were examined with a standard clinical CT procedure; the eight computer models generated from these data were used to predict the mechanical stresses in the same loading conditions, and the predictions were then compared to the measured values. The study confirmed that the method developed at the Medical Technology Lab has accuracy better than 10%, which twice more accurate than any other previously published study.

This level of accuracy makes possible the introduction of these subject-specific predictive models in the clinical practice, in applications such as the prediction of the risk of fracture in osteoporotic patients, the preoperative planning of complex skeletal reconstructions in paediatric oncology or in traumatology, or the retrospective investigation of joint arthoplasties that failed in relation to biomechanical factors.

Annalisa Bandieri | alfa
Further information:
http://www.tecno.ior.it

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>