Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GIOVE-A transmits first navigation message

07.05.2007
Earlier this week, GIOVE-A successfully transmitted its first navigation message, containing the information needed by user receivers to calculate their position. Prior to reaching this milestone, the satellite had been broadcasting only the data needed for measuring the receiver-to-satellite distance.

The first Galileo navigation message was created by the navigation signal generator unit on board GIOVE-A, using content prepared by the GIOVE Mission Segment. This week-one navigation message was uplinked to GIOVE-A on 2 May from the Guildford ground station operated by Surrey Satellite Technology Ltd (United Kingdom) and then transmitted from the spacecraft to the users. The objective of the test was to demonstrate an end-to-end link between the Mission Segment and the user receivers. The navigation message is being generated for demonstration purposes only – no service guarantee is provided.

The complete radio transmission from GIOVE-A carries a navigation signal and a navigation message. The navigation signal contains the information needed to accurately measure the distance from the satellite to the user receiver. The navigation message provides the timing and spacecraft orbit data needed to calculate the time and exact position of the satellite. One of the main tasks of the GIOVE Mission Segment is the generation of this navigation message.

GIOVE Mission Segment

The GIOVE Mission Segment comprises two main elements, a world-wide network of 13 Galileo experimental sensor stations and the GIOVE Processing Centre (GPC) located at ESA’s European Space Research and Technology Centre (ESTEC) in Noordwijk, The Netherlands. The GPC is operated by European Satellite Navigation Industries (ESNIS) – the new name for Galileo Industries.

In order to generate the navigation message, the sensor stations track the signal-in-space from GIOVE-A and send the tracking information to the processing centre. The GPC computes, among other things, the precise satellite flight path and on-board clock model. It then generates a prediction of the orbital path and clock performance for the near-term future, which is the basis of the navigation message. Next, this message is transmitted to GIOVE-A which retransmits it to the user.

Aside from navigation message generation, the primary tasks of the GIOVE Mission Segment are performance characterisation of the on-board clocks, orbit modelling, and operations planning & telemetry analysis for the navigation payload.

Another validation step completed

On 12 January 2006, GIOVE A transmitted the first Galileo signals, thereby securing the frequencies allocated to Galileo by the International Telecommunication Union. Now, the transmissions are carrying a navigation message – this means that the satellite is providing information that is needed by a receiver to calculate its position.

Although the navigation message structure of GIOVE-A is slightly different, the GIOVE-A navigation transmissions are fully representative of those that will be sent by the operational Galileo system. The operating principles are identical and the achievement of the first navigation message is another important step in the validation of the Galileo system design.

GPS interoperability

Following this successful test, in the near future GIOVE-A will begin to continuously broadcast the navigation message, with the message content being updated whenever the satellite is visible from the Guildford uplink station. Additionally, the message content will be extended to include the time offset between GPS and the experimental Galileo system. Knowing this offset, the Experimental Galileo-GPS Time Offset (E-GGTO), will allow the user to build a position fix using GPS satellites and GIOVE-A.

Galileo is a joint initiative between ESA and the European Commission. When fully deployed in the early years of the next decade, it will be the first civilian positioning system to offer global coverage.

Dominique Detain | alfa
Further information:
http://www.esa.int/esaNA/SEM0QSU681F_index_0.html

More articles from Information Technology:

nachricht Researchers achieve HD video streaming at 10,000 times lower power
20.04.2018 | University of Washington

nachricht An AI that makes road maps from aerial images
18.04.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>