Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next-generation, high-performance processor unveiled at the University of Texas at Austin

26.04.2007
New processor has the potential of reaching trillions of calculations per second

The prototype for a revolutionary new general-purpose computer processor, which has the potential of reaching trillions of calculations per second, has been designed and built by a team of computer scientists at The University of Texas at Austin.

The new processor, known as TRIPS (Tera-op, Reliable, Intelligently adaptive Processing System), could be used to accelerate industrial, consumer and scientific computing.

Professors Stephen Keckler, Doug Burger and Kathryn McKinley have been working on underlying technology that culminated in the TRIPS prototype for the past seven years. Their research team designed and built the hardware prototype chips and the software that runs on the chips.

"The TRIPS prototype is the first on a roadmap that will lead to ultra-powerful, flexible processors implemented in nanoscale technologies," said Burger, associate professor of computer sciences.

TRIPS is a demonstration of a new class of processing architectures called Explicit Data Graph Execution (EDGE). Unlike conventional architectures that process one instruction at a time, EDGE can process large blocks of information all at once and more efficiently.

Current "multicore" processing technologies increase speed by adding more processors, which individually may not be any faster than previous processors.

Adding processors shifts the burden of obtaining better performance to software programmers, who must assume the difficult task of rewriting their code to run well on a potentially large number of processors.

"EDGE technology offers an alternative approach when the race to multicore runs out of steam," said Keckler, associate professor of computer sciences.

Each TRIPS chip contains two processing cores, each of which can issue 16 operations per cycle with up to 1,024 instructions in flight simultaneously. Current high-performance processors are typically designed to sustain a maximum execution rate of four operations per cycle.

Though the prototype contains two 16-wide processors per chip, the research team aims to scale this up with further development.

Stephen Keckler | EurekAlert!
Further information:
http://www.utexas.edu
http://oea.cs.utexas.edu/articles/index2007/trips_unveiling07.html

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>