Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Search engine makes social calls

07.03.2002


New algorithm exploits community structure of the web.



The web has spontaneously organized itself into communities. A new search algorithm that pinpoints these could help surfers find what they want and avoid offensive content.

Page builders can link anywhere. But they don’t, Gary Flake, of the NEC Research Institute in Princeton, and his colleagues have found. Instead, pages congregate into social groups that focus most of their attention on each other.


Web directories compiled by hand, such as Yahoo!, recognize this to an extent. Flake’s team has automated the process. "We find extremely high-quality sites that Yahoo! and Google don’t know about," he says.

The new search ignores a page’s text, looking only at its links. It crawls from a starting page to others it links to, and so on out into the web, picking out islands of expertise in the sea of information.

A test of the algorithm starting at the home pages of biologist Francis Crick, astrophysicist Stephen Hawking, and computer scientist Ronald Rivest yielded groups of sites that are tightly focused on each researcher’s life, work and field. "The sites are remarkably topically related - the clusters’ properties are completely intuitive," says Flake.

"You can extract a lot of meaning from links," agrees Mike Thelwall, who studies search engines at the University of Wolverhampton, UK. The new approach is, he says, a clever way to find meaningful groups among the effectively infinite number of ways to subdivide linked pages.

The first application of community searching may be to fence off areas of the web such as pornography or hate-speech communities, says Flake. Current content filters are largely text-based; these are easy to dodge and require intensive human management.

Community service

Google pioneered the use of links to deduce pages’ relevance. Its PageRank technology counts a link from site A to site B as a vote for B from A. But it does not take account of all the other sites to which A has links, as NEC’s new technique does.

Flake does not expect to displace the market leader - "Google’s a great search engine," he says. Rather, he wants to add an extra dimension to searching.

Using link structures could lead to more efficient, customized searching, particularly for scientists, who are careful to link to each other’s pages. "For academics it’s going to be a big improvement," says Thelwall.

Flake’s team is now mapping out communities in the web as a whole, without using a starter page. This could detect hitherto unsuspected communities, says computer scientist and network researcher Jon Kleinberg of Cornell University in Ithaca, New York.

"It could bring together people with common interests that may not know of each other’s existence. You could also catch the early stages of new trends," says Kleinberg.

References
  1. Flake, G. W., Lawrence, S., Giles, C. L. & Coetzee, F. Self-organization and identification of communities. IEEE Computer, 35, 66 - 71, (2002).

JOHN WHITFIELD | © Nature News Service

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>