Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Search engine makes social calls

07.03.2002


New algorithm exploits community structure of the web.



The web has spontaneously organized itself into communities. A new search algorithm that pinpoints these could help surfers find what they want and avoid offensive content.

Page builders can link anywhere. But they don’t, Gary Flake, of the NEC Research Institute in Princeton, and his colleagues have found. Instead, pages congregate into social groups that focus most of their attention on each other.


Web directories compiled by hand, such as Yahoo!, recognize this to an extent. Flake’s team has automated the process. "We find extremely high-quality sites that Yahoo! and Google don’t know about," he says.

The new search ignores a page’s text, looking only at its links. It crawls from a starting page to others it links to, and so on out into the web, picking out islands of expertise in the sea of information.

A test of the algorithm starting at the home pages of biologist Francis Crick, astrophysicist Stephen Hawking, and computer scientist Ronald Rivest yielded groups of sites that are tightly focused on each researcher’s life, work and field. "The sites are remarkably topically related - the clusters’ properties are completely intuitive," says Flake.

"You can extract a lot of meaning from links," agrees Mike Thelwall, who studies search engines at the University of Wolverhampton, UK. The new approach is, he says, a clever way to find meaningful groups among the effectively infinite number of ways to subdivide linked pages.

The first application of community searching may be to fence off areas of the web such as pornography or hate-speech communities, says Flake. Current content filters are largely text-based; these are easy to dodge and require intensive human management.

Community service

Google pioneered the use of links to deduce pages’ relevance. Its PageRank technology counts a link from site A to site B as a vote for B from A. But it does not take account of all the other sites to which A has links, as NEC’s new technique does.

Flake does not expect to displace the market leader - "Google’s a great search engine," he says. Rather, he wants to add an extra dimension to searching.

Using link structures could lead to more efficient, customized searching, particularly for scientists, who are careful to link to each other’s pages. "For academics it’s going to be a big improvement," says Thelwall.

Flake’s team is now mapping out communities in the web as a whole, without using a starter page. This could detect hitherto unsuspected communities, says computer scientist and network researcher Jon Kleinberg of Cornell University in Ithaca, New York.

"It could bring together people with common interests that may not know of each other’s existence. You could also catch the early stages of new trends," says Kleinberg.

References
  1. Flake, G. W., Lawrence, S., Giles, C. L. & Coetzee, F. Self-organization and identification of communities. IEEE Computer, 35, 66 - 71, (2002).

JOHN WHITFIELD | © Nature News Service

More articles from Information Technology:

nachricht Making Waves
29.06.2017 | Institute of Science and Technology Austria

nachricht Seeing the forest through the trees with a new LiDAR system
28.06.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>