Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Search engine makes social calls

07.03.2002


New algorithm exploits community structure of the web.



The web has spontaneously organized itself into communities. A new search algorithm that pinpoints these could help surfers find what they want and avoid offensive content.

Page builders can link anywhere. But they don’t, Gary Flake, of the NEC Research Institute in Princeton, and his colleagues have found. Instead, pages congregate into social groups that focus most of their attention on each other.


Web directories compiled by hand, such as Yahoo!, recognize this to an extent. Flake’s team has automated the process. "We find extremely high-quality sites that Yahoo! and Google don’t know about," he says.

The new search ignores a page’s text, looking only at its links. It crawls from a starting page to others it links to, and so on out into the web, picking out islands of expertise in the sea of information.

A test of the algorithm starting at the home pages of biologist Francis Crick, astrophysicist Stephen Hawking, and computer scientist Ronald Rivest yielded groups of sites that are tightly focused on each researcher’s life, work and field. "The sites are remarkably topically related - the clusters’ properties are completely intuitive," says Flake.

"You can extract a lot of meaning from links," agrees Mike Thelwall, who studies search engines at the University of Wolverhampton, UK. The new approach is, he says, a clever way to find meaningful groups among the effectively infinite number of ways to subdivide linked pages.

The first application of community searching may be to fence off areas of the web such as pornography or hate-speech communities, says Flake. Current content filters are largely text-based; these are easy to dodge and require intensive human management.

Community service

Google pioneered the use of links to deduce pages’ relevance. Its PageRank technology counts a link from site A to site B as a vote for B from A. But it does not take account of all the other sites to which A has links, as NEC’s new technique does.

Flake does not expect to displace the market leader - "Google’s a great search engine," he says. Rather, he wants to add an extra dimension to searching.

Using link structures could lead to more efficient, customized searching, particularly for scientists, who are careful to link to each other’s pages. "For academics it’s going to be a big improvement," says Thelwall.

Flake’s team is now mapping out communities in the web as a whole, without using a starter page. This could detect hitherto unsuspected communities, says computer scientist and network researcher Jon Kleinberg of Cornell University in Ithaca, New York.

"It could bring together people with common interests that may not know of each other’s existence. You could also catch the early stages of new trends," says Kleinberg.

References
  1. Flake, G. W., Lawrence, S., Giles, C. L. & Coetzee, F. Self-organization and identification of communities. IEEE Computer, 35, 66 - 71, (2002).

JOHN WHITFIELD | © Nature News Service

More articles from Information Technology:

nachricht Defining the backbone of future mobile internet access
21.07.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht Researchers create new technique for manipulating polarization of terahertz radiation
20.07.2017 | Brown University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>