Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC San Diego Supercomputer Simulations May Pinpoint Causes of Parkinson’s, Alzheimer’s Diseases

23.03.2007
Using the massive computer-simulation power of the San Diego Supercomputer Center (SDSC) at UC San Diego, researchers are zeroing in on the causes of Parkinson’s disease, Alzheimer’s disease, rheumatoid arthritis and other diseases.

A study published in this week’s Federation of European Biochemical Societies (FEBS) Journal offers – for the first time – a model for the complex process of aggregation of a protein known as alpha-synuclein, which in turn leads to harmful ring-like or pore-like structures in human membranes, the kind of damage found in Parkinson’s and Alzheimer’s patients.

The researchers at SDSC and UC San Diego also found that the destructive properties of alpha-synuclein can be blocked by beta-synuclein – a finding that could lead to treatments for many debilitating diseases.

The current journal’s cover features an image from the research that helps illustrate the scientists’ work.

“This is one of the first studies to use supercomputers to model how alpha-synuclein complexes damage the cells, and how that could be blocked,” said Eliezer Masliah, professor of neurosciences and pathology at UC San Diego. “We believe that these ring- or pore-like structures might be deleterious to the cells, and we have a unique opportunity to better understand how alpha-synuclein is involved in the pathogenesis of Parkinson’s disease, and how to reverse this process.”

Igor Tsigelny, project scientist in chemistry and biochemistry at UC San Diego and a researcher at SDSC, said that the team’s research helped confirm what researchers had suspected. “The present study – using molecular modeling and molecular dynamics simulations in combination with biochemical and ultrastructural analysis – shows that alpha-synuclein can lead to the formation of pore-like structures on membranes.”

In contrast, he said, “beta-synuclein appears to block the propagation of alpha-synucleins into harmful structures.”

The complex calculations for the study were performed on Blue Gene supercomputers at SDSC and the Argonne National Labs.

Tsigelny worked in collaboration with Pazit Bar-On, Department of Neurosciences; Yuriy Sharikov of SDSC; Leslie Crews of the Department of Pathology; Makoto Hashimoto of Neurosciences; Mark A. Miller of SDSC; Steve H. Keller in Medicine; Oleksandr Platoshyn and Jason X.J. Yuan, both in Medicine; and Masliah, all at UC San Diego.

The research was supported by funding from the National Institutes of Health, a Department of Energy INCITE Grant, the Argonne National Laboratory, and the SDSC/ IBM Institute for Innovation in Biomedical Simulations and Visualization

Media Contact: Paul K. Mueller, 858-534-8564

Paul K. Mueller | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Information Technology:

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>