Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC San Diego Supercomputer Simulations May Pinpoint Causes of Parkinson’s, Alzheimer’s Diseases

23.03.2007
Using the massive computer-simulation power of the San Diego Supercomputer Center (SDSC) at UC San Diego, researchers are zeroing in on the causes of Parkinson’s disease, Alzheimer’s disease, rheumatoid arthritis and other diseases.

A study published in this week’s Federation of European Biochemical Societies (FEBS) Journal offers – for the first time – a model for the complex process of aggregation of a protein known as alpha-synuclein, which in turn leads to harmful ring-like or pore-like structures in human membranes, the kind of damage found in Parkinson’s and Alzheimer’s patients.

The researchers at SDSC and UC San Diego also found that the destructive properties of alpha-synuclein can be blocked by beta-synuclein – a finding that could lead to treatments for many debilitating diseases.

The current journal’s cover features an image from the research that helps illustrate the scientists’ work.

“This is one of the first studies to use supercomputers to model how alpha-synuclein complexes damage the cells, and how that could be blocked,” said Eliezer Masliah, professor of neurosciences and pathology at UC San Diego. “We believe that these ring- or pore-like structures might be deleterious to the cells, and we have a unique opportunity to better understand how alpha-synuclein is involved in the pathogenesis of Parkinson’s disease, and how to reverse this process.”

Igor Tsigelny, project scientist in chemistry and biochemistry at UC San Diego and a researcher at SDSC, said that the team’s research helped confirm what researchers had suspected. “The present study – using molecular modeling and molecular dynamics simulations in combination with biochemical and ultrastructural analysis – shows that alpha-synuclein can lead to the formation of pore-like structures on membranes.”

In contrast, he said, “beta-synuclein appears to block the propagation of alpha-synucleins into harmful structures.”

The complex calculations for the study were performed on Blue Gene supercomputers at SDSC and the Argonne National Labs.

Tsigelny worked in collaboration with Pazit Bar-On, Department of Neurosciences; Yuriy Sharikov of SDSC; Leslie Crews of the Department of Pathology; Makoto Hashimoto of Neurosciences; Mark A. Miller of SDSC; Steve H. Keller in Medicine; Oleksandr Platoshyn and Jason X.J. Yuan, both in Medicine; and Masliah, all at UC San Diego.

The research was supported by funding from the National Institutes of Health, a Department of Energy INCITE Grant, the Argonne National Laboratory, and the SDSC/ IBM Institute for Innovation in Biomedical Simulations and Visualization

Media Contact: Paul K. Mueller, 858-534-8564

Paul K. Mueller | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Information Technology:

nachricht Drones that drive
27.06.2017 | Massachusetts Institute of Technology, CSAIL

nachricht Ahead of the Curve
27.06.2017 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>