Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software pinpoints traffic accident 'hotspots'

20.03.2007
Ohio State University scientists have created software that can identify traffic accident hotspots on state roadways.

The software is publicly available and can be adapted for use by any state, said Christopher Holloman, associate director of the Statistical Consulting Service in Ohio State's Department of Statistics. Currently, the Ohio State Highway Patrol is using it to help position its cruisers during major holidays.

"We can make predictions for every major roadway in Ohio, under all possible road conditions, for every hour of the day, for every day of the week," Holloman said.

The software relies on reports of injuries and fatalities from the highway patrol, and incorporates statistics about what makes accidents happen.

Common accident causes such as speeding or alcohol consumption are fairly easy to model using computers, Holloman explained. Others -- such as when a driver will be distracted by a cell phone -- are impossible. So the software makes general forecasts.

"Everyone would love to be able to predict exactly where and when the next crash would be, but there are just too many factors involved, and too much randomness to do that," he said. "We can confidently make broad statements, like whether a particular piece of roadway is riskier at a particular time."

Not surprisingly, the software indicates that most speeding accidents in Ohio happen during weekday rush hours, and most drunk-driving accidents happen on the weekends between 2:00 and 3:00 a.m. -- after the bars close. But it did reveal some facts that weren't so obvious.

In Columbus, for instance, most speeding accidents happen on the northern potion of the outer beltway, Interstate 270. But Interstate 71, which divides the city north to south, is a hotspot for drunk-driving accidents.

Ohio is the seventh most populated state in the United States, and most residents live in and around the cities of Columbus, Cleveland, and Cincinnati.

Holloman expected to find that most fatal traffic accidents happen near those three cities. He didn't expect to find that most fatalities around Columbus and Cincinnati happen on the interstates, while near Cleveland more fatalities occur on the U.S. routes and state routes, as people cross the border to and from Pennsylvania. He says that his contacts at the highway patrol didn't seem surprised.

"It confirmed what they already knew, which is fine," he said. The software can't indicate the underlying cause of why a particular area is prone to a particular type of accident, but it may help the highway patrol find those answers. "We see the software as a supplement to officer expertise, and to the efforts of the highway patrol's quantitative analysis group, which does its own analysis of crash data."

"It's just one more tool in the patrol's toolbox."

Holloman and his colleagues have been issuing reports to the highway patrol in advance of every major holiday since July 4, 2005. That first report only covered interstates around major Ohio cities. Last fall, they expanded their computer model to include all Ohio interstates, U.S. routes and state routes for which crash data was available. Now they've combined the software with Google Earth, which Holloman said will make the tool even easier to use.

Google Earth offers an interactive map of the entire globe, including major roadways. The Ohio State software color-codes the roadways in Ohio, so that users can zoom in to see the general likelihood of accidents in any region of the state.

It's not something the average person would run on their home computer, however. The software uses a 900-megabyte database that details every traffic accident that occurred on Ohio highways from 2001-2005, and generates 50 gigabytes of output data. The equations that Holloman and his colleagues developed to connect all that data took two weeks to process at the Ohio Supercomputer Center.

The software would have to be modified to fit other states, and Holloman said the university's Statistical Consulting Service would like to do that. Other states would benefit from the fact that the Ohio State Highway Patrol paid the $50,000 development costs; customizing the software for a new state would cost about half as much.

The key to making the software work in a particular state is the quality of the accident data, Holloman said. The Ohio State Highway Patrol was able to gather precise data from nearly all 88 Ohio counties, including the location of crashes.

"I have to wonder if other states have such good data collection," Holloman said. "Having the latitude and longitude of the crashes was fantastic."

The Ohio Supercomputer Center donated the computing resources for this study.

Christopher Holloman | EurekAlert!
Further information:
http://www.osu.edu

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>