Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software pinpoints traffic accident 'hotspots'

20.03.2007
Ohio State University scientists have created software that can identify traffic accident hotspots on state roadways.

The software is publicly available and can be adapted for use by any state, said Christopher Holloman, associate director of the Statistical Consulting Service in Ohio State's Department of Statistics. Currently, the Ohio State Highway Patrol is using it to help position its cruisers during major holidays.

"We can make predictions for every major roadway in Ohio, under all possible road conditions, for every hour of the day, for every day of the week," Holloman said.

The software relies on reports of injuries and fatalities from the highway patrol, and incorporates statistics about what makes accidents happen.

Common accident causes such as speeding or alcohol consumption are fairly easy to model using computers, Holloman explained. Others -- such as when a driver will be distracted by a cell phone -- are impossible. So the software makes general forecasts.

"Everyone would love to be able to predict exactly where and when the next crash would be, but there are just too many factors involved, and too much randomness to do that," he said. "We can confidently make broad statements, like whether a particular piece of roadway is riskier at a particular time."

Not surprisingly, the software indicates that most speeding accidents in Ohio happen during weekday rush hours, and most drunk-driving accidents happen on the weekends between 2:00 and 3:00 a.m. -- after the bars close. But it did reveal some facts that weren't so obvious.

In Columbus, for instance, most speeding accidents happen on the northern potion of the outer beltway, Interstate 270. But Interstate 71, which divides the city north to south, is a hotspot for drunk-driving accidents.

Ohio is the seventh most populated state in the United States, and most residents live in and around the cities of Columbus, Cleveland, and Cincinnati.

Holloman expected to find that most fatal traffic accidents happen near those three cities. He didn't expect to find that most fatalities around Columbus and Cincinnati happen on the interstates, while near Cleveland more fatalities occur on the U.S. routes and state routes, as people cross the border to and from Pennsylvania. He says that his contacts at the highway patrol didn't seem surprised.

"It confirmed what they already knew, which is fine," he said. The software can't indicate the underlying cause of why a particular area is prone to a particular type of accident, but it may help the highway patrol find those answers. "We see the software as a supplement to officer expertise, and to the efforts of the highway patrol's quantitative analysis group, which does its own analysis of crash data."

"It's just one more tool in the patrol's toolbox."

Holloman and his colleagues have been issuing reports to the highway patrol in advance of every major holiday since July 4, 2005. That first report only covered interstates around major Ohio cities. Last fall, they expanded their computer model to include all Ohio interstates, U.S. routes and state routes for which crash data was available. Now they've combined the software with Google Earth, which Holloman said will make the tool even easier to use.

Google Earth offers an interactive map of the entire globe, including major roadways. The Ohio State software color-codes the roadways in Ohio, so that users can zoom in to see the general likelihood of accidents in any region of the state.

It's not something the average person would run on their home computer, however. The software uses a 900-megabyte database that details every traffic accident that occurred on Ohio highways from 2001-2005, and generates 50 gigabytes of output data. The equations that Holloman and his colleagues developed to connect all that data took two weeks to process at the Ohio Supercomputer Center.

The software would have to be modified to fit other states, and Holloman said the university's Statistical Consulting Service would like to do that. Other states would benefit from the fact that the Ohio State Highway Patrol paid the $50,000 development costs; customizing the software for a new state would cost about half as much.

The key to making the software work in a particular state is the quality of the accident data, Holloman said. The Ohio State Highway Patrol was able to gather precise data from nearly all 88 Ohio counties, including the location of crashes.

"I have to wonder if other states have such good data collection," Holloman said. "Having the latitude and longitude of the crashes was fantastic."

The Ohio Supercomputer Center donated the computing resources for this study.

Christopher Holloman | EurekAlert!
Further information:
http://www.osu.edu

More articles from Information Technology:

nachricht Japanese researchers develop ultrathin, highly elastic skin display
19.02.2018 | University of Tokyo

nachricht Why bees soared and slime flopped as inspirations for systems engineering
19.02.2018 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>