Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small drops to put out large fires

12.02.2007
Russian scientists are developing a mathematical model of both the fire itself and the technology needed to fight it that uses disperses water.

As a result it will be possible not only to gain a thorough understanding of the processes that occur with microscopic water droplets in the zone of the fire, but also to select optimal, that is the most effective and economical, means to put out a fire. Information support for the project comes from the International Science and Technology Centre, whose specialists found the project to have immense potential.

At the heart of the project, which involves the work of specialists from the All-Russia Research Institute of Experimental Physics (Sarov) and their colleagues from the St. Petersburg State Polytechnic University, lies the use of sprayed water where the individual droplets are about 100 microns in size. While it may seem strange to the layperson that such small droplets could put out a blazing fire, the specialists are in no doubt at all. Its advantages are in the following.

An aero-suspension (aerosols or droplets in air) has an immense specific surface, so the burning zone rapidly cools. The volume of the dispersed water cloud, too, is an order greater than from a jet of water of the same mass. Therefore the efficiency coefficient or, more specifically, the coefficient of water use, is tens of times higher as compared with a usual jet, even if such a jet is both powerful and precisely directed. Furthermore, in the event of a forest fire, for example, when the area of coverage is very large, it is practically impossible to cope with the fire with individual jets or with a localized strike per se; while pouring on water in one place, the fire flares up in another. In addition, the damage caused to a building by putting out a fire is comparable to the damage from the fire itself, while a mist would be very unlikely to even affect electronic equipment.

In theory, there is no doubt that the method has considerable promise. However, in practice things do not always turn out so simply. To ensure the method really is effective, a multitude of factors have to be borne in mind. These factors include the correlation between the specific power of the focal point of the burning and the sizes of the space to be protected, the size, concentration and rate of movement of the droplets, the intensity and duration of the process of extinguishing the fire for different fire fighting systems that use fundamentally different means of obtaining the active material and many others.

Furthermore, serious theoretical studies are needed, relative to the formation and the behaviour of water droplets at high temperature, and to the parameters of gas flows in the area of the fire and in its direct vicinity. The fact is that the high efficiency of this method is conditioned by the fact that dispersed water rapidly cools the zone of the burning, while water vapour forces out the oxygen from it. This is the so-called phlegmatization method, in part resembling how fire is covered with a thick blanket, only here a cloud of mist covers the entire zone of the fire at once, depriving the fire of heat, air and, finally, its very life. However, this is of course if the dispersed water reaches the zone of the fire, and in the sufficient quantity. Therefore, conditions have to be created so that its convection flows were as if drawn into the area of the fire before the minute droplets can evaporate from the heat or before they are carried away by a flow of hot gases.

Mathematical modelling helps the scientists to cope with such complicated and multiple-factor research. They have already achieved serious success in developing the mathematical model of certain processes that occur during the burning and extinguishing of fires with dispersed water. However, virtual experiments alone are not enough for a complete solution of the set tasks; what are needed are genuine, full-scale experiments, as it is these that will enable the more precise definition of the numerical model and the final determination of the optimal means for putting out a fire with dispersed water.

VNIIEF has the required conditions, that is, a testing ground, where such experiments may be conducted. However, unfortunately it is not yet sufficiently equipped with the requisite equipment, such as IR sensors that would enable rapid measurement of temperature in any point, both in the very focal point of the fire and in the space around it. Yet the scientists know for sure what equipment they need and they are confident that, with the required financing, they could develop the technology to help put out a fire rapidly, effectively and as safely as it could possibly be done. The guarantee of success lies in the colossal experience and knowledge that is available.

Andrew Vakhliaev | alfa
Further information:
http://www.tech-db.ru

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>