Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Small drops to put out large fires

Russian scientists are developing a mathematical model of both the fire itself and the technology needed to fight it that uses disperses water.

As a result it will be possible not only to gain a thorough understanding of the processes that occur with microscopic water droplets in the zone of the fire, but also to select optimal, that is the most effective and economical, means to put out a fire. Information support for the project comes from the International Science and Technology Centre, whose specialists found the project to have immense potential.

At the heart of the project, which involves the work of specialists from the All-Russia Research Institute of Experimental Physics (Sarov) and their colleagues from the St. Petersburg State Polytechnic University, lies the use of sprayed water where the individual droplets are about 100 microns in size. While it may seem strange to the layperson that such small droplets could put out a blazing fire, the specialists are in no doubt at all. Its advantages are in the following.

An aero-suspension (aerosols or droplets in air) has an immense specific surface, so the burning zone rapidly cools. The volume of the dispersed water cloud, too, is an order greater than from a jet of water of the same mass. Therefore the efficiency coefficient or, more specifically, the coefficient of water use, is tens of times higher as compared with a usual jet, even if such a jet is both powerful and precisely directed. Furthermore, in the event of a forest fire, for example, when the area of coverage is very large, it is practically impossible to cope with the fire with individual jets or with a localized strike per se; while pouring on water in one place, the fire flares up in another. In addition, the damage caused to a building by putting out a fire is comparable to the damage from the fire itself, while a mist would be very unlikely to even affect electronic equipment.

In theory, there is no doubt that the method has considerable promise. However, in practice things do not always turn out so simply. To ensure the method really is effective, a multitude of factors have to be borne in mind. These factors include the correlation between the specific power of the focal point of the burning and the sizes of the space to be protected, the size, concentration and rate of movement of the droplets, the intensity and duration of the process of extinguishing the fire for different fire fighting systems that use fundamentally different means of obtaining the active material and many others.

Furthermore, serious theoretical studies are needed, relative to the formation and the behaviour of water droplets at high temperature, and to the parameters of gas flows in the area of the fire and in its direct vicinity. The fact is that the high efficiency of this method is conditioned by the fact that dispersed water rapidly cools the zone of the burning, while water vapour forces out the oxygen from it. This is the so-called phlegmatization method, in part resembling how fire is covered with a thick blanket, only here a cloud of mist covers the entire zone of the fire at once, depriving the fire of heat, air and, finally, its very life. However, this is of course if the dispersed water reaches the zone of the fire, and in the sufficient quantity. Therefore, conditions have to be created so that its convection flows were as if drawn into the area of the fire before the minute droplets can evaporate from the heat or before they are carried away by a flow of hot gases.

Mathematical modelling helps the scientists to cope with such complicated and multiple-factor research. They have already achieved serious success in developing the mathematical model of certain processes that occur during the burning and extinguishing of fires with dispersed water. However, virtual experiments alone are not enough for a complete solution of the set tasks; what are needed are genuine, full-scale experiments, as it is these that will enable the more precise definition of the numerical model and the final determination of the optimal means for putting out a fire with dispersed water.

VNIIEF has the required conditions, that is, a testing ground, where such experiments may be conducted. However, unfortunately it is not yet sufficiently equipped with the requisite equipment, such as IR sensors that would enable rapid measurement of temperature in any point, both in the very focal point of the fire and in the space around it. Yet the scientists know for sure what equipment they need and they are confident that, with the required financing, they could develop the technology to help put out a fire rapidly, effectively and as safely as it could possibly be done. The guarantee of success lies in the colossal experience and knowledge that is available.

Andrew Vakhliaev | alfa
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>