Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spectacular future

22.01.2007
Tired of choosing between functionality and style? A system for perfectly fitted glasses is currently being developed at the Norwegian University of Science and Technology (NTNU).

Glasses that fit you perfectly, enhance your personality, fit the bridge of your nose, with nose cushions that stay on, and side bars that do not pinch behind your ears.

All in addition to perfect optical properties. In the future, glasses will be designed to fit your face just as you need them, want them, and deserve them.

Three-dimensional scanning

When buying glasses, you will be scanned in three dimensions using a technology called photogrammetry. The image taken of you, measures all sizes of your face and along the side of your head.

Your face will appear on a computer screen as a three-dimensional head with your natural looks.

At this point, you are ready to join the fun as a designer. The computer will find the correct measurements for your glasses, such as optical axis, and tell you the exact distance from your eye to the spectacle lens.

Personal expression

Naturally, considerations will be made to the root of your nose and its shape. In cooperation with opticians, and perhaps an online style consultant, you will look through the suggested glasses that will give you the personal expression you are looking for.

Sporty? Well, perhaps slightly angular lenses. Academic? Perhaps more rounded. Creative? Several colours and materials are possible, of course. The contact with the manufacturer of glasses is established. They will evaluate the glasses.

Adjustments will be made to ensure proper functionality, but also with a view to future maintenance. Is it possible to choose a different joint between the lens and the side bar? They look almost identical, but with a fraction of the costs.

After an hour or two in the shop your private, specially designed glasses are ready to be made. Would you like a second pair in a different colour?

Both, please

This is how the future shopping for glasses could look like. Professor Wolfgang H. Koch at the Department of Production and Quality Engineering at NTNU is developing the system that will result in glasses fitted to the buyer.

”We cooperate with several people to include all aspects in this project, from opticians, eye specialists, and designers, to manufacturers of glasses. They all need different systems adjusted to their field of activity. We create the total, computer-integrated network, with the desired user-friendliness for everyone," Koch says.

”You should not be forced to choose between functionality and style. Both, please,” says the professor of computer-integrated production.

Glasses only an example

The work will deal with design, construction, manufacturing, and quality assurance of products in a so-called “Virtual Manufacturing Network”.

“The project with the glasses is only one of the examples used under the exchange of experience around customer-individualized products such as dental prostheses, shoes, car seats, computer mice, hip prostheses – anything ‘close to the person’,” says Professor Koch.

”The products will be fitted to the person, not the other way around. The results will be used in the further work aiming to build a computer-integrated production network around medical technology,” Koch concludes.

By Hege Tunstad

Nina Tveter | alfa
Further information:
http://www.ntnu.no

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>