Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Computed Imaging Technique Uses Blurry Images To Enhance View

22.01.2007
Researchers at the University of Illinois at Urbana-Champaign have developed a novel computational image-forming technique for optical microscopy that can produce crisp, three-dimensional images from blurry, out-of-focus data.

Called Interferometric Synthetic Aperture Microscopy, ISAM can do for optical microscopy what magnetic resonance imaging did for nuclear magnetic resonance, and what computed tomography did for X-ray imaging, the scientists say.

"ISAM can perform high-speed, micron-scale, cross-sectional imaging without the need for time-consuming processing, sectioning and staining of resected tissue," said Stephen Boppart, a professor of electrical and computer engineering, of bioengineering, and of medicine at the U. of I., and corresponding author of a paper accepted for publication in the journal Nature Physics, and posted on its Web site.

Developed by postdoctoral research associate and lead author Tyler Ralston, research scientist Daniel Marks, electrical and computer engineering professor P. Scott Carney, and Boppart, the imaging technique utilizes a broad-spectrum light source and a spectral interferometer to obtain high-resolution, reconstructed images from the optical signals based on an understanding of the physics of light-scattering within the sample.

"ISAM has the potential to broadly impact real-time, three-dimensional microscopy and analysis in the fields of cell and tumor biology, as well as in clinical diagnosis where imaging is preferable to biopsy," said Boppart, who is also a physician and founding director of the Mills Breast Cancer Institute at Carle Foundation Hospital in Urbana, Ill.

While other methods of three-dimensional optical microscopy require the instrument's focal plane to be scanned through the region of interest, ISAM works by utilizing light from the out-of-focus image planes, Ralston said. "Although most of the image planes are blurry, ISAM descrambles the light to produce a fully focused, three-dimensional image."

ISAM effectively extends the region of the image that is in focus, using information that was discarded in the past.

"We have demonstrated that the discarded information can be computationally reconstructed to quickly create the desired image," Marks said. "We are now applying the technique to various microscopy methods used in biological imaging."

In their paper, the researchers demonstrate the usefulness of computed image reconstruction on both phantom tissue and on excised human breast-tumor tissue.

"ISAM can assist doctors by providing faster diagnostic information, and by facilitating the further development of image-guided surgery," Boppart said. "Using ISAM, it may be possible to perform micron-scale imaging over large volumes of tissue rather than resecting large volumes of tissue."

The versatile imaging technique can be applied to existing hardware with only minor modifications.

In addition to previously mentioned affiliations, Boppart, Carney, Marks and Ralston hold positions within the department of electrical and computer engineering and are affiliated with the U. of I.'s Beckman Institute for Advanced Science and Technology. Boppart also is affiliated with the university's Micro and Nanotechnology Laboratory and the Institute for Genomic Biology; Carney also is affiliated with the university's Coordinated Science Laboratory.

The National Institutes of Health, National Science Foundation, and the Beckman Institute funded the work.

mes E. Kloeppel | University of Illinois
Further information:
http://www.uiuc.edu

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>