Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One year of Galileo signals; new web site opens

15.01.2007
One year ago today, GIOVE-A began transmitting Galileo navigation signals. This satellite is the first flight element in ESA’s in-orbit validation programme for Galileo.

Carried into space from the Baikonur Cosmodrome in Kazakhstan by a Soyuz launch vehicle on 28 December 2005, GIOVE-A then successfully completed the initial tasks in its mission – orbit injection, deployment of its solar arrays and the commissioning and check-out of its various payload systems – before commencing the transmission of navigation signals.

This signal transmission has secured the use of the frequencies allocated to the Galileo system by the International Telecommunication Unit (ITU), achieving the primary mission for which the satellite was constructed.

The receivers that have been developed for Galileo were able to receive the first signals at ESA sites at Redu (Belgium) and Noordwijk (Netherlands), at the Chilbolton Observatory (UK) and at the Guildford (UK) mission control centre of Surrey Satellite Technology Ltd, the prime contractor for GIOVE-A.

The navigation signal has been broadcast continuously to fulfil the other important objectives of the GIOVE mission:

*verification of the critical technologies for the Galileo satellites, including the on-board Rubidium Atomic Frequency Standard (RAFS) clocks, the navigation signal generator and the chain of equipment that comprises the navigation payload

*characterisation of the novel features of the Galileo signal design, including the verification of user receivers and their resistance to interference and multi-path reception in realistic static and dynamic conditions, aiming to better estimate the effect on navigation services and future applications

*characterisation of the radiation environment of the Medium Earth Orbit (23 260 km altitude) planned for the Galileo constellation, to better understand this particular environment – particularly the radiation doses and electro-magnetic fields that could affect the design of the operational system

GIOVE Mission Segment

To complete the in-orbit validation mission, ESA has deployed the GIOVE Mission Segment, composed of a network of 13 monitoring stations located around the world and a GIOVE Processing Centre located at ESA’s European Space Research and Technology Centre (ESTEC), in Noordwijk, the Netherlands. The processing centre is currently receiving measurements for GIOVE-A, and will also receive data for the GIOVE-B satellite which will be launched by the end of 2007.

The GIOVE Processing Centre computes precise orbits and clock timings for the GIOVE satellites, based on the measurements made by the global network of Galileo Experimental Sensor Stations that collect Galileo and GPS observables once per second. In the future, navigation messages will be generated and up-linked to the satellites through their control centres.

The GIOVE Processing Centre is already started to provide fascinating, first-ever experimental results that will allow risk mitigation for the operational system development in the in-orbit validation phase.

In satellite navigation, the achievable positional accuracy is driven by, among other factors, the performance of the navigation message broadcast by the satellites, the satellite clock stability, and the user’s receiver and environment. The GIOVE mission is confirming the correctness of assumptions made at the early stages of the Galileo system design using actual measurements performed in orbit. This confirmation shows that the service performance requirements can be met and the overall Galileo system design is on track.

New web site

Information on the GIOVE mission is now accessible at www.giove.esa.int. This new web site provides general information to the public and measurement data and core products to registered external users who are collaborating with ESA on the mission experiments.

Galileo is a joint initiative of the European Commission (EC) and ESA. The EC is responsible for the political dimension and the high-level mission definition. ESA’s responsibility covers the technology development as well as design, development and in-orbit validation of the space and ground elements.

Dominique Detain | alfa
Further information:
http://www.esa.int/esaNA/SEMUGJRMTWE_index_0.html

More articles from Information Technology:

nachricht Satellite data for agriculture
28.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>