Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon wafers which can be aligned ‘like Lego’

11.01.2007
A technique which will allow silicon wafers to be stacked accurately and inexpensively in 3-D structures has been developed by researchers at the University of Southampton.

According to Dr Michael Kraft at the University's School of Electronics & Computer Science (ECS), the major challenge when stacking silicon wafers is to align one wafer to another, matching all the features.

'The alignment needs to be accurate,' commented Dr Kraft. 'At the moment, big chunky machines are being used and the process is being carried out optically. The optical path is long and this introduces errors.'

Dr Kraft and his colleague, Professor Mark Spearing at the School of Engineering Sciences, worked with Dr Liudi Jiang, who is now a Roberts Fellow in the School of Engineering Sciences, to develop what they describe as 'an effective passive alignment technique for the achievement of nanoprecision alignment'.

The approach adopted by the researchers means that the alignment features consisting of convex pyramids and concave pits can be fabricated and chip scale specimens can be successfully bonded after the microfabrication process. An alignment precision of 200 nanometres has been achieved.

'We have demonstrated that we do not need expensive machines to create alignment,' said Dr Kraft. 'Our system will automatically fit the wafers together like Lego.'

The researchers are in the process of submitting a proposal to the Engineering and Physical Sciences Research Council (EPSRC) to enable them to develop their work in this field further.

Helene Murphy | alfa
Further information:
http://www.ecs.soton.ac.uk

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>