Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Facial models allow "band-efficient" video communication

11.02.2002


Is it possible to combine a three-dimensional wire model of a face with real pictures of the same face? And is it possible to get the computer that is forming the new image to follow the face even when the person in question makes sudden movements or partially covers her face with her hand? These are a couple of the research questions for the Image Coding Group at the Department of Electrical Engineering at Linköping University in Sweden. The aim is to find a new technology for information-efficient video communication.



Traditional transmission of moving images require extremely broad bandwidth, which is a constraint. So-called model-based coding may be a way to get around the problem in cases involving forms that can be transferred to a model—a face, for example.

One possible approach is to have a computer encode the geometry of a certain person’s face and to create a wire model. The model is sent, together with a real picture of the face, to a receiving computer that combines the image and the model. In the pursuant communication, it is not necessary to transmit a complete flow of video images, but only the data that represent changes in the wire model. In this manner communication takes place using far less bandwidth.


Jacob Ström, one of the members of the Image Coding Group, will soon be defending his doctoral dissertation, in which he has worked with a facial model and attempted to create algorithms that can help the computer keep up with rapid facial movements. The goal is to get the computer to carry out encoding of faces under natural conditions, that is, when the person speaking moves and turns her head without having to sit unnaturally still in front of the camera all the time.

Ingela Björck | alphagalileo
Further information:
http://www.liu.se

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>