Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Striped nanowires shrink electronics

07.02.2002


Multi-flavoured nanowires can act as miniature bar-codes, diodes and light sources
© SPL



Wires one-millionth of a millimetre wide change composition along their length.

Wires one-millionth of a millimetre wide that change chemical composition along their length, just as fruit pastilles change flavour along a packet, have been grown in the United States. These multi-flavoured nanowires can act as miniature bar-codes, diodes and light sources.

Conventional microelectronics components are etched into flat layers of semiconducting material. Charles Lieber and colleagues at Harvard University in Cambridge, Massachusetts, grow their wires - smaller than the thinnest wire on a commercial silicon chip - from vapours of the atomic ingredients.



Lieber’s group perfected their method for making semiconductor nanowires two years ago. They use a tiny blob of a catalyst, which stays at the growing tip of the wire like the point of a pencil tracing out a line. The size of the catalyst particle controls the wire’s width.

Now the researchers report that, by choosing their catalyst carefully - they use gold nanocrystals - they can grow sequential lengths of a single wire from different chemicals1. They use a laser to blast a semiconductor into a vapour, which then condenses into nanowires. Exposing the growing wires first to one kind of vapour and then to another varies the composition along the wire.

Superlattice lines up

The team has made wires about 20 nanometres across that contain alternating sections of the semiconductors gallium arsenide and gallium phosphide. Microelectronic engineers often use structures like this, called superlattices, in electronic devices. They are currently made by carving up flat sandwiches of layered semiconductors.

Superlattices are used, for example, as mirrors in microscopic lasers, or as waveguides to capture and confine light. If electrons are trapped in a thin layer of a semiconductor sandwiched between barriers of a different semiconductor, quantum wells are created that emit light. The colour of the light can be tuned by varying the well thickness.

Nanowire superlattices could be used in all these applications. Their size means that many more could be packed onto a single chip than today’s microelectronics components. The researchers envisage making nanowire lasers, for example.

Up the junction

To demonstrate the wires’ potential, Lieber’s group made structures called p-n junctions. They grew silicon nanowires in two sections, each spiced with a different additive to fine-tune the electrical behaviour of the silicon. These nanowire p-n junctions behave like diodes - they let current flow in only one direction.

The team also made p-n junctions that act as light-emitting diodes. Because these glowing devices are so small, the researchers hope to make them expel light one photon at a time. This could be useful in a new type of ultra-powerful information processing called quantum computing.

References

  1. Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C. & Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature, 415, 617 - 620, (2002).


PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/020204/020204-7.html

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020

21.11.2017 | Physics and Astronomy

Borophene shines alone as 2-D plasmonic material

21.11.2017 | Materials Sciences

Penn study identifies new malaria parasites in wild bonobos

21.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>