Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Striped nanowires shrink electronics

07.02.2002


Multi-flavoured nanowires can act as miniature bar-codes, diodes and light sources
© SPL



Wires one-millionth of a millimetre wide change composition along their length.

Wires one-millionth of a millimetre wide that change chemical composition along their length, just as fruit pastilles change flavour along a packet, have been grown in the United States. These multi-flavoured nanowires can act as miniature bar-codes, diodes and light sources.

Conventional microelectronics components are etched into flat layers of semiconducting material. Charles Lieber and colleagues at Harvard University in Cambridge, Massachusetts, grow their wires - smaller than the thinnest wire on a commercial silicon chip - from vapours of the atomic ingredients.



Lieber’s group perfected their method for making semiconductor nanowires two years ago. They use a tiny blob of a catalyst, which stays at the growing tip of the wire like the point of a pencil tracing out a line. The size of the catalyst particle controls the wire’s width.

Now the researchers report that, by choosing their catalyst carefully - they use gold nanocrystals - they can grow sequential lengths of a single wire from different chemicals1. They use a laser to blast a semiconductor into a vapour, which then condenses into nanowires. Exposing the growing wires first to one kind of vapour and then to another varies the composition along the wire.

Superlattice lines up

The team has made wires about 20 nanometres across that contain alternating sections of the semiconductors gallium arsenide and gallium phosphide. Microelectronic engineers often use structures like this, called superlattices, in electronic devices. They are currently made by carving up flat sandwiches of layered semiconductors.

Superlattices are used, for example, as mirrors in microscopic lasers, or as waveguides to capture and confine light. If electrons are trapped in a thin layer of a semiconductor sandwiched between barriers of a different semiconductor, quantum wells are created that emit light. The colour of the light can be tuned by varying the well thickness.

Nanowire superlattices could be used in all these applications. Their size means that many more could be packed onto a single chip than today’s microelectronics components. The researchers envisage making nanowire lasers, for example.

Up the junction

To demonstrate the wires’ potential, Lieber’s group made structures called p-n junctions. They grew silicon nanowires in two sections, each spiced with a different additive to fine-tune the electrical behaviour of the silicon. These nanowire p-n junctions behave like diodes - they let current flow in only one direction.

The team also made p-n junctions that act as light-emitting diodes. Because these glowing devices are so small, the researchers hope to make them expel light one photon at a time. This could be useful in a new type of ultra-powerful information processing called quantum computing.

References

  1. Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C. & Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature, 415, 617 - 620, (2002).


PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/020204/020204-7.html

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>