Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Striped nanowires shrink electronics

07.02.2002


Multi-flavoured nanowires can act as miniature bar-codes, diodes and light sources
© SPL



Wires one-millionth of a millimetre wide change composition along their length.

Wires one-millionth of a millimetre wide that change chemical composition along their length, just as fruit pastilles change flavour along a packet, have been grown in the United States. These multi-flavoured nanowires can act as miniature bar-codes, diodes and light sources.

Conventional microelectronics components are etched into flat layers of semiconducting material. Charles Lieber and colleagues at Harvard University in Cambridge, Massachusetts, grow their wires - smaller than the thinnest wire on a commercial silicon chip - from vapours of the atomic ingredients.



Lieber’s group perfected their method for making semiconductor nanowires two years ago. They use a tiny blob of a catalyst, which stays at the growing tip of the wire like the point of a pencil tracing out a line. The size of the catalyst particle controls the wire’s width.

Now the researchers report that, by choosing their catalyst carefully - they use gold nanocrystals - they can grow sequential lengths of a single wire from different chemicals1. They use a laser to blast a semiconductor into a vapour, which then condenses into nanowires. Exposing the growing wires first to one kind of vapour and then to another varies the composition along the wire.

Superlattice lines up

The team has made wires about 20 nanometres across that contain alternating sections of the semiconductors gallium arsenide and gallium phosphide. Microelectronic engineers often use structures like this, called superlattices, in electronic devices. They are currently made by carving up flat sandwiches of layered semiconductors.

Superlattices are used, for example, as mirrors in microscopic lasers, or as waveguides to capture and confine light. If electrons are trapped in a thin layer of a semiconductor sandwiched between barriers of a different semiconductor, quantum wells are created that emit light. The colour of the light can be tuned by varying the well thickness.

Nanowire superlattices could be used in all these applications. Their size means that many more could be packed onto a single chip than today’s microelectronics components. The researchers envisage making nanowire lasers, for example.

Up the junction

To demonstrate the wires’ potential, Lieber’s group made structures called p-n junctions. They grew silicon nanowires in two sections, each spiced with a different additive to fine-tune the electrical behaviour of the silicon. These nanowire p-n junctions behave like diodes - they let current flow in only one direction.

The team also made p-n junctions that act as light-emitting diodes. Because these glowing devices are so small, the researchers hope to make them expel light one photon at a time. This could be useful in a new type of ultra-powerful information processing called quantum computing.

References

  1. Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C. & Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature, 415, 617 - 620, (2002).


PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/020204/020204-7.html

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>