Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fingerprint Technology Pioneered in Leicester- To Identify the Dead

27.11.2006
Technology developed for roadside fingerprints using hand-held devices-announced in the media this month- has also been pioneered in identifying the dead, it has been revealed.

The University of Leicester, working with Leicestershire Constabulary and the Institute of Legal Medicine, University of Hamburg, recorded the first ever use of the technology on the dead over six months ago.

The purpose of developing the technique is to enable rapid identification of the deceased and would be of particular benefit in cases of mass fatalities.

The research has been submitted for consideration for publication to an international forensic medical journal and has been carried out by Professor Guy Rutty of the East Midlands Forensic Pathology Unit at the University of Leicester; Karen Stringer, Leicestershire Constabulary Fingerprint Bureaux, and Dr E.E.Turk Institute of Legal Medicine, University of Hamburg.

Professor Rutty said: “No matter where one works in the world, the primary purpose of a medico-legal autopsy is the investigation of who the person was, where, when and by what means they came by their death.

“In mass fatality investigations there is a shift of emphasis of the investigative process towards gathering information for the identification of the deceased. Fingerprinting is usually undertaken by scene of crime or fingerprint officers at the mortuary and although the recovery of fingerprints is possible at the scene of death, as with mortuary recovery, to date handheld real-time on-site analysis (near-patient testing) is not available to investigators.”

The researchers made use of a handheld, mobile wireless unit used in conjunction with a Personal Digital Assistant (PDA) device for the capture of fingerprints from the dead. They also used a handheld single digit fingerprint scanner which utilises a USB laptop connection for the electronic capture of cadaveric fingerprints

Professor Rutty added: “We believe that, through conversations with our colleagues throughout the fingerprint world and the failure to identify any previous peer reviewed publication, we have demonstrated the first use of a handheld PDA based biometric fingerprinting device for use for fingerprinting the dead.

“We have also demonstrated the use of a single digit fingerprint unit with the dead, building upon the scanty literature on the use of larger Livescan devices but more importantly highlighting the limitations of such devices to date. We have applied this technology to an actual real case which resulted in a positive identification, the first of its type to have been undertaken in the UK.”

The researchers also tested the technique on ‘live’ candidates and found some interesting results.

Professor Rutty said: “Although prints were acquired in all cases we observed a number of difficulties with the use of the unit which affected its operation and print quality. The quality of the prints depended on the gender and age of the individual with females worse than males; elderly female pads showed more cracking and loss of ridge details than males in the series captured. Greasy fingers or the use of hand creams decreased the ability to capture images. Grease, creams or sweaty fingers lead to the persistence of fingerprints on the scanner pad which caused smudged images or multiple images of later fingers. This was overcome by drying of the fingers with a cloth prior to capture.”

Alex Jelley | alfa
Further information:
http://www.le.ac.uk

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>