Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fingerprint Technology Pioneered in Leicester- To Identify the Dead

27.11.2006
Technology developed for roadside fingerprints using hand-held devices-announced in the media this month- has also been pioneered in identifying the dead, it has been revealed.

The University of Leicester, working with Leicestershire Constabulary and the Institute of Legal Medicine, University of Hamburg, recorded the first ever use of the technology on the dead over six months ago.

The purpose of developing the technique is to enable rapid identification of the deceased and would be of particular benefit in cases of mass fatalities.

The research has been submitted for consideration for publication to an international forensic medical journal and has been carried out by Professor Guy Rutty of the East Midlands Forensic Pathology Unit at the University of Leicester; Karen Stringer, Leicestershire Constabulary Fingerprint Bureaux, and Dr E.E.Turk Institute of Legal Medicine, University of Hamburg.

Professor Rutty said: “No matter where one works in the world, the primary purpose of a medico-legal autopsy is the investigation of who the person was, where, when and by what means they came by their death.

“In mass fatality investigations there is a shift of emphasis of the investigative process towards gathering information for the identification of the deceased. Fingerprinting is usually undertaken by scene of crime or fingerprint officers at the mortuary and although the recovery of fingerprints is possible at the scene of death, as with mortuary recovery, to date handheld real-time on-site analysis (near-patient testing) is not available to investigators.”

The researchers made use of a handheld, mobile wireless unit used in conjunction with a Personal Digital Assistant (PDA) device for the capture of fingerprints from the dead. They also used a handheld single digit fingerprint scanner which utilises a USB laptop connection for the electronic capture of cadaveric fingerprints

Professor Rutty added: “We believe that, through conversations with our colleagues throughout the fingerprint world and the failure to identify any previous peer reviewed publication, we have demonstrated the first use of a handheld PDA based biometric fingerprinting device for use for fingerprinting the dead.

“We have also demonstrated the use of a single digit fingerprint unit with the dead, building upon the scanty literature on the use of larger Livescan devices but more importantly highlighting the limitations of such devices to date. We have applied this technology to an actual real case which resulted in a positive identification, the first of its type to have been undertaken in the UK.”

The researchers also tested the technique on ‘live’ candidates and found some interesting results.

Professor Rutty said: “Although prints were acquired in all cases we observed a number of difficulties with the use of the unit which affected its operation and print quality. The quality of the prints depended on the gender and age of the individual with females worse than males; elderly female pads showed more cracking and loss of ridge details than males in the series captured. Greasy fingers or the use of hand creams decreased the ability to capture images. Grease, creams or sweaty fingers lead to the persistence of fingerprints on the scanner pad which caused smudged images or multiple images of later fingers. This was overcome by drying of the fingers with a cloth prior to capture.”

Alex Jelley | alfa
Further information:
http://www.le.ac.uk

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>