Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fingerprint Technology Pioneered in Leicester- To Identify the Dead

27.11.2006
Technology developed for roadside fingerprints using hand-held devices-announced in the media this month- has also been pioneered in identifying the dead, it has been revealed.

The University of Leicester, working with Leicestershire Constabulary and the Institute of Legal Medicine, University of Hamburg, recorded the first ever use of the technology on the dead over six months ago.

The purpose of developing the technique is to enable rapid identification of the deceased and would be of particular benefit in cases of mass fatalities.

The research has been submitted for consideration for publication to an international forensic medical journal and has been carried out by Professor Guy Rutty of the East Midlands Forensic Pathology Unit at the University of Leicester; Karen Stringer, Leicestershire Constabulary Fingerprint Bureaux, and Dr E.E.Turk Institute of Legal Medicine, University of Hamburg.

Professor Rutty said: “No matter where one works in the world, the primary purpose of a medico-legal autopsy is the investigation of who the person was, where, when and by what means they came by their death.

“In mass fatality investigations there is a shift of emphasis of the investigative process towards gathering information for the identification of the deceased. Fingerprinting is usually undertaken by scene of crime or fingerprint officers at the mortuary and although the recovery of fingerprints is possible at the scene of death, as with mortuary recovery, to date handheld real-time on-site analysis (near-patient testing) is not available to investigators.”

The researchers made use of a handheld, mobile wireless unit used in conjunction with a Personal Digital Assistant (PDA) device for the capture of fingerprints from the dead. They also used a handheld single digit fingerprint scanner which utilises a USB laptop connection for the electronic capture of cadaveric fingerprints

Professor Rutty added: “We believe that, through conversations with our colleagues throughout the fingerprint world and the failure to identify any previous peer reviewed publication, we have demonstrated the first use of a handheld PDA based biometric fingerprinting device for use for fingerprinting the dead.

“We have also demonstrated the use of a single digit fingerprint unit with the dead, building upon the scanty literature on the use of larger Livescan devices but more importantly highlighting the limitations of such devices to date. We have applied this technology to an actual real case which resulted in a positive identification, the first of its type to have been undertaken in the UK.”

The researchers also tested the technique on ‘live’ candidates and found some interesting results.

Professor Rutty said: “Although prints were acquired in all cases we observed a number of difficulties with the use of the unit which affected its operation and print quality. The quality of the prints depended on the gender and age of the individual with females worse than males; elderly female pads showed more cracking and loss of ridge details than males in the series captured. Greasy fingers or the use of hand creams decreased the ability to capture images. Grease, creams or sweaty fingers lead to the persistence of fingerprints on the scanner pad which caused smudged images or multiple images of later fingers. This was overcome by drying of the fingers with a cloth prior to capture.”

Alex Jelley | alfa
Further information:
http://www.le.ac.uk

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>